
J Cryptogr Eng (2012) 2:77–89
DOI 10.1007/s13389-012-0027-1

REGULAR PAPER

High-speed high-security signatures

Daniel J. Bernstein · Niels Duif · Tanja Lange ·
Peter Schwabe · Bo-Yin Yang

Received: 5 October 2011 / Accepted: 4 January 2012 / Published online: 14 August 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper shows that a $390 mass-market quad-
core 2.4GHz Intel Westmere (Xeon E5620) CPU can create
109000 signatures per second and verify 71000 signatures
per second on an elliptic curve at a 2128 security level. Public
keys are 32 bytes, and signatures are 64 bytes. These per-
formance figures include strong defenses against software
side-channel attacks: there is no data flow from secret keys

This work was supported by the National Science Foundation under
grant 1018836, by the European Commission under Contract
ICT-2007-216676 ECRYPT II, and by the National Science Council,
National Taiwan University and Intel Corporation under Grant
NSC99-2911-I-002-001 and 99-2218-E-001-007, and the Academia
Sinica Career Award. Part of this work was carried out when Peter
Schwabe was employed by Academia Sinica, Taiwan. Part of this
work was carried out when Niels Duif was employed by Compumatica
secure networks BV, the Netherlands. Permanent ID of this document:
a1a62a2f76d23f65d622484ddd09caf8. Date: 2012.01.26.

D. J. Bernstein (B)
Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7053, USA
e-mail: djb@cr.yp.to

N. Duif · T. Lange
Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB,
Eindhoven, The Netherlands
e-mail: nielsduif@hotmail.com

T. Lange
e-mail: tanja@hyperelliptic.org

P. Schwabe
Department of Electrical Engineering, National Taiwan University,
1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
e-mail: peter@cryptojedi.org

B.-Y. Yang
Institute of Information Science, Academia Sinica,
128 Section 2 Academia Road, Taipei 115-29, Taiwan
e-mail: by@crypto.tw

to array indices, and there is no data flow from secret keys to
branch conditions.

Keywords Elliptic curves · Edwards curves · Signatures ·
Speed · Software side channels · Foolproof session keys

1 Introduction

This paper introduces software for public-key signatures with
several attractive features:

– Fast single-signature verification. The software takes
only 273364 cycles to verify a signature on Intel’s widely
deployed Nehalem/Westmere lines of CPUs. (This perfor-
mance measurement is for short messages; for very long
messages, verification time is dominated by hashing time.)
Nehalem and Westmere include all Core i7, i5, and i3
CPUs released between 2008 and 2010, and most Xeon
CPUs released in the same period.

– Even faster batch verification. The software performs a
batch of 64 separate signature verifications (verifying 64
signatures of 64 messages under 64 public keys) in only
8.55 million cycles, i.e., under 134000 cycles per signa-
ture. The software fits easily into L1 cache, so contention
between cores is negligible: a quad-core 2.4GHz West-
mere verifies 71000 signatures per second, while keeping
the maximum verification latency below 4 milliseconds.

– Very fast signing. The software takes only 87548 cycles
to sign a message. A quad-core 2.4GHz Westmere signs
109000 messages per second.

– Fast key generation. Key generation is almost as fast as
signing. There is a slight penalty for key generation to
obtain a secure random number from the operating system;
/dev/urandom under Linux costs about 6000 cycles.

123

78 J Cryptogr Eng (2012) 2:77–89

– High security level. This system has a 2128 security tar-
get; breaking it has similar difficulty to breaking NIST
P-256, RSA with ≈ 3000-bit keys, strong 128-bit block
ciphers, etc. (The same techniques would also produce
speed improvements at other security levels.) The best
attacks known actually cost more than 2140 bit operations
on average, and degrade quadratically in success probabil-
ity as the number of bit operations drops.

– Foolproof session keys. Signatures in this paper are gener-
ated deterministically; key generation consumes new ran-
domness but new signatures do not. This is not only a speed
feature but also a security feature, directly relevant to the
recent collapse of the Sony PlayStation 3 security system.
See Section 2 for further discussion.

– Collision resilience. Hash-function collisions do not
break this system. This adds a layer of defense against
the possibility of weakness in the selected hash function.

– No secret array indices. The software never reads or
writes data from secret addresses in RAM; the pattern
of addresses is completely predictable. The software is
therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage
of addresses through the CPU cache.

– No secret branch conditions. The software never per-
forms conditional branches based on secret data; the pat-
tern of jumps is completely predictable. The software is
therefore immune to side-channel attacks that rely on leak-
age of information through the branch-prediction unit.

– Small signatures. Signatures fit into 64 bytes. These sig-
natures are actually compressed versions of longer signa-
tures; the times for compression and decompression are
included in the cycle counts reported above.

– Small keys. Public keys consume only 32 bytes. The times
for compression and decompression are again included.

We have submitted our software to the eBATS project
[15] for public benchmarking, and placed the software into
the public domain to maximize reusability. The numbers
87548 and 273364 shown above are from the eBATS reports
for our software on a Westmere CPU (Intel Xeon E5620,
hydra2).

Our signatures are elliptic-curve signatures, carefully
engineered at several levels of design and implementation
to achieve very high speeds without compromising secu-
rity. Section 2 specifies the signature system; Section 3
explains the techniques we use for finite-field arithmetic;
Section 4 discusses fast signatures; Section 5 discusses fast
verification.

Comparison to previous ECC work. Carrying out high-
security elliptic-curve signature verification in only 134000
cycles on a single core of a typical Intel CPU is unprece-
dented. The following paragraphs discuss previous work.

Readers should be aware of several difficulties in com-
paring ECC performance results. First, most papers on fast
ECC have been limited to ECDH (variable-base-point single-
scalar multiplication) and have not implemented ECC signa-
ture verification, although there are certainly some excep-
tions—for example, [21] reported verification 1.33× slower
than ECDH, and [34] reported verification 1.36× slower
than ECDH. Second, most implementations use secret array
indices and secret branch conditions and therefore must be
assumed to be breakable by side-channel attacks, as illus-
trated by the successful OpenSSL attack in [23]; this is not
an issue for public-key signature verification but it is an issue
for signing and for ECDH. Third, most papers report results
for only a few CPUs, so anyone without access to the same
CPUs must engage in error-prone extrapolation from one
CPU to another; this is not an issue for systems included in
the eBATS benchmarks, but we are aware of two recent ECC
implementations (discussed below) that are not included in
eBATS.

Intel’s “Turbo Boost” and AMD’s “Turbo Core” have
added a further difficulty for new CPUs. Typical benchmark-
ing frameworks measure performance on a single CPU core,
and Turbo Boost fools most of these frameworks into report-
ing excessively low Westmere cycle counts—speeds that the
CPU cannot actually achieve when a sensible workload is
keeping all cores busy. The eBATS reports include explicit
warnings regarding Turbo Boost. This corruption does not
occur onhydra2: Turbo Boost is disabled on that computer.

Before this paper, the closest system to ours in eBATS
was ecdonaldp256: ECDSA signatures using the NIST
P-256 elliptic curve. On hydra2 this system takes 1690936
cycles for key generation, 1790936 cycles for signing, and
2087500 cycles for verification. Better speeds were reported
for ECDH:

– Third place was curve25519, an implementation by
Gaudry and Thomé [35] of Bernstein’s Curve25519 [12].

– Second place was 307180 cycles for ecfp256e, an
implementation by Hisil [40] of ECDH on an Edwards
curve with similar security properties to Curve25519.

– First place was 278256 cycles for gls1271, an imple-
mentation by Galbraith, Lin, and Scott [34] of ECDH on
an Edwards curve with an endomorphism.

The recent papers [38] and [44] point out security problems
with endomorphisms in some ECC-based protocols, but as
far as we can tell those security issues are not relevant to
ECDH with standard hashing of the ECDH output, and are
not relevant to ECC signatures.

Longa and Gebotys in [52] claimed 281000 cycles on a
Core 2 Duo E6750 (C2 65nm) for ECDH on a curve simi-
lar to ecfp256e, and 229000 cycles for ECDH on a curve
similar to gls1271. The software in [52] is not included in

123

J Cryptogr Eng (2012) 2:77–89 79

the eBATS benchmarks and apparently is not publicly avail-
able, so we are unable to benchmark it on a Westmere. More
recently Käsper in [46] reported 457813 cycles for side-chan-
nel-protected ECDH on the NIST P-224 curve on a Core 2
Duo E8400 (C2 45nm); this software has been integrated into
OpenSSL but not yet into eBATS.

To aid comparisons we also implemented ECDH, specif-
ically curve25519, with the same side-channel defenses
as our signature software (no secret array indices, and no
secret branch conditions). We submitted our ECDH software
to eBATS, which reports that the software uses 226872 cycles
on hydra2 for variable-base-point single-scalar multiplica-
tion. This is a new speed record for public ECDH software, a
new speed record for side-channel-protected ECDH (out of
all the papers mentioned above, the only ones that report side-
channel protection are [12] and [46]), a new speed record for
ECDH with single-size public keys (32 bytes at this security
level instead of 64 bytes), and a new speed record for ECDH
without endomorphisms.

We do not claim that curve25519will maintain its cur-
rent position on top of eBATS: we would expect ECDH with
endomorphisms (especially with 64-byte keys and without
side-channel protection) to be somewhat faster than ECDH
without endomorphisms on many platforms. This expecta-
tion seems to be supported by the very recent paper [42] by
Hu, Longa, and Xu: [42, Table 2] claims 194000 cycles for
a curve with endomorphisms on an Intel Core 2 Duo E6750,
and the accompanying web site [51] cited in [42, reference
18] claims 182000 cycles for a curve with endomorphisms on
an Intel Core i5 540M (Westmere). The same web site also
claims 215000 Westmere cycles for a curve without endo-
morphisms. However, like the software in [52], the software
in [42] and [51] does not appear to be publicly available.
The resulting lack of verifiability raises questions regarding
accuracy. We are particularly skeptical of the Westmere speed
claims, given the Turbo Boost issues discussed above. After
we wrote this paragraph, the same web site was updated to
claim 250000 cycles for the same software on another West-
mere CPU.

Given our 226872-cycle ECDH speed, given the ECDH-
to-verification slowdowns reported in [21] and [34], and
given the extra costs that we incur for decompressing keys
and signatures, one would expect a verification speed close
to 400000 cycles. We do better than this for several reasons,
the most important reason being our use of batching. This
requires careful design of the signature system, as discussed
later in this paper: ECDSA, like DSA and most other signa-
ture systems, is incompatible with fast batch verification.

Comparison to other signature systems. The eBATS
benchmarks cover 42 different signature systems, includ-
ing various sizes of RSA, DSA, ECDSA, hyperelliptic-curve
signatures, and multivariate-quadratic signatures. This paper

beats almost all of the signature times and verification times
(and key-generation times, which are an issue for some appli-
cations) by more than a factor of 2. The only exceptions are
as follows:

– Multivariate-quadratic signatures are competitive in speed.
For example, sflashv2 takes 124740 cycles to sign and
165884 cycles to verify; mqqsig256 takes 4212 cycles
to sign and 134900 cycles to verify; smaller mqqsig ver-
sions are even faster. However, sflashv2 was broken
by Dubois, Fouque, Shamir, and Stern in [30]. We are not
aware of any security evaluation of mqqsig, which was
introduced last year in [36], but we disregardmqqsig256
for the simple reason that it has a 789552-byte public key.

– donald512 (512-bit DSA) takes 334508 cycles to ver-
ify. This is comparable to our single-signature verification
speed but much slower than our batch verification speed.
This is also at a far lower security level, breakable in about
260 simple operations.

– Some RSA-type systems provide faster verification—but
this advantage decreases as the security level increases,
and for many applications the advantage is outweighed by
much slower signatures and much larger keys. For exam-
ple, rwb0fuz1024 (1024-bit Rabin–Williams) uses
12304 cycles to verify but 1751284 cycles to sign and
128 bytes for a public key; ronald1024 (1024-bit RSA)
uses 60300 cycles to verify but 2171124 cycles to sign and
128 bytes for a public key; ronald3072 (3072-bit RSA)
uses 231536 cycles to verify but an astonishing 31456912
cycles to sign and 384 bytes for a public key. This paper
uses 134000 cycles to verify (in batches), 87548 cycles to
sign, and 32 bytes for a public key.

The conventional wisdom is that RSA signatures are much
better than ECC signatures in applications where each signa-
ture is verified many times, since RSA verification is much
faster than ECC verification. Our ECC speed results call this
conventional wisdom into question. We do not claim that
our verification speeds cannot be beaten by RSA at the same
security level, but we do claim that they are fast enough to
make ECC an attractive option even for verification-intensive
applications such as [71].

2 The signature system

This section specifies the signature system used in this paper,
and a generalized signature system EdDSA that can be used
with other choices of elliptic curves.

There is an extensive literature on variants of the clas-
sic signature system introduced by ElGamal in [33]; nota-
ble variants include Schnorr’s signature system [73], DSA,

123

80 J Cryptogr Eng (2012) 2:77–89

and ECDSA. Our generalized system is another of these
variants. We do not claim novelty for any of the individual
modifications that we use, but we emphasize that selecting a
good combination of modifications is critical for top perfor-
mance. The most obvious modification is that we use twisted
Edwards curves rather than Weierstrass curves; this explains
our choice of the name EdDSA (Edwards-curve Digital Sig-
nature Algorithm).

EdDSA parameters. EdDSA has seven parameters: an inte-
ger b ≥ 10; a cryptographic hash function H producing
2b-bit output; a prime power q congruent to 1 modulo 4;
a (b − 1)-bit encoding of elements of the finite field Fq ; a
non-square element d of Fq ; a prime � between 2b−4 and
2b−3 satisfying an extra constraint described below; and an
element B �= (0, 1) of the set

E =
{
(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2 y2

}
.

The condition that d is not a square implies that d �∈ {0,−1},
so this set E forms a group with neutral element 0 = (0, 1)

under the twisted Edwards addition law

(x1, y1) + (x2, y2) =
(

x1 y2 + x2 y1

1 + dx1x2 y1 y2
,

y1 y2 + x1x2

1 − dx1x2 y1 y2

)

introduced by Bernstein, Birkner, Joye, Lange, and Peters
in [13]. Completeness of the addition law — the fact that
the denominators 1 ± dx1x2 y1 y2 are nonzero — follows as
explained in [13, Section 6]: −1 is a square in Fq (since q
is congruent to 1 modulo 4), so this addition law on E is
Fq -isomorphic to the Edwards addition law on the Edwards
curve x2 + y2 = 1 − dx2 y2, which is complete by [14, The-
orem 3.3] since −d is not a square in Fq . The latter follows
from d being a non-square and −1 being a square in Fq . The
extra constraint mentioned above is that �B = 0, where nB
means the nth multiple of B in this group.

We use the encoding of Fq to define some field elements
as being negative: specifically, x is negative if the (b −1)-bit
encoding of x is lexicographically larger than the (b − 1)-bit
encoding of −x . If q is an odd prime and the encoding is
the little-endian representation of {0, 1, . . . , q − 1} then the
negative elements of Fq are {1, 3, 5, . . . , q − 2}.

An element (x, y) ∈ E is encoded as a b-bit string (x, y),
namely the (b − 1)-bit encoding of y followed by a sign
bit; the sign bit is 1 iff x is negative. This encoding imme-
diately determines y, and it determines x via the equation
x = ±√

(y2 − 1)/(dy2 + 1).

EdDSA keys and signatures. An EdDSA secret key is a b-bit
string k. The hash H(k) = (h0, h1, . . . , h2b−1) determines
an integer

a = 2b−2+
∑

3≤i≤b−3

2i hi ∈
{

2b−2, 2b−2+8, . . . , 2b−1−8
}
,

which in turn determines the multiple A = aB. The corre-
sponding EdDSA public key is A. Bits hb, . . . , h2b−1 of the
hash are used as part of signing, as discussed in a moment.

The signature of a message M under this secret key k
is defined as follows. Define r = H(hb, . . . , h2b−1, M) ∈{
0, 1, . . . , 22b − 1

}
; here we interpret 2b-bit strings in little-

endian form as integers in
{
0, 1, . . . , 22b − 1

}
. Define R =

r B. Define S = (r + H(R, A, M)a) mod �. The signature of
M under k is then the 2b-bit string (R, S), where S is the b-
bit little-endian encoding of S. Applications wishing to pack
data into every last nook and cranny should note that the last
three bits of signatures are always 0 because � fits into b − 3
bits.

Verification of an alleged signature on a message M under
a public key works as follows. The verifier parses the key as A
for some A ∈ E , and parses the alleged signature as (R, S)

for some R ∈ E and S ∈ {0, 1, . . . , � − 1}. The verifier
computes H(R, A, M) and then checks the group equation
8SB = 8R + 8H(R, A, M)A in E . The verifier rejects the
alleged signature if the parsing fails or if the group equation
does not hold.

To see that signatures pass verification, simply multiply B
by the equation S = (r + H(R, A, M)a) mod �, and use the
fact that �B = 0, to see that SB = r B + H(R, A, M)aB =
R + H(R, A, M)A. The verifier is permitted to check this
stronger equation and to reject alleged signatures where
the stronger equation does not hold. However, this is not
required; checking that 8SB = 8R + 8H(R, A, M)A is
enough for security.

Weak keys. Forgeries are trivial if A is a known multiple of
B. For example, an attacker who knows that A = 37B can
choose r and compute S = (r + 37H(R, A, M)) mod �. As
an even more extreme example, an attacker who knows that
A = 0B can choose r and compute S = r mod �, indepen-
dently of M . We could declare that 0B and 37B are “bro-
ken” by these two “attacks” and that users must check for,
and reject, these “weak keys”; but the same confused logic
would require rejecting all keys in all cryptosystems, and
would have no relevance to the standard definition of signa-
ture security.

Legitimate users choose A = aB, where a is a random
secret; the derivation of a from H(k) ensures adequate ran-
domness. These users have negligible chance of generating
any particular multiple of B targeted by the attacker (and
no chance of generating 0B). The chance of the attacker ran-
domly guessing a is far smaller than the chance of the attacker
computing a by known discrete-logarithm algorithms; stan-
dard elliptic-curve security criteria are designed so that the
latter algorithms have negligible chance of succeeding in any
reasonable amount of time.

Malleability. We also see no relevance of “malleability” to
the standard definition of signature security. For example,

123

J Cryptogr Eng (2012) 2:77–89 81

if we slightly modified the system then replacing S by −S
and replacing A by −A (a slight variant of the “attack” of
[76]) would convert one valid signature into another valid
signature of the same message under a new public key; but
it would still not accomplish the attacker’s goal, namely to
forge a signature on a new message under a target public key.
One such modification would be to omit A from the hashing;
another such modification would be to have A encode only
|A|, rather than A.

Choice of curve. Our recommended curve for EdDSA is
a twisted Edwards curve birationally equivalent to the curve
Curve25519 from [12]. Any efficiently computable birational
equivalence preserves ECDLP difficulty, so the well-known
difficulty of computing ECDLP for Curve25519 immediately
implies the difficulty of computing ECDLP for our curve. We
use the name Ed25519 for EdDSA with this particular choice
of curve.

Specifically, Ed25519-SHA-512 is EdDSA with the fol-
lowing parameters: b = 256; H is SHA-512; q is the prime
2255 −19; the 255-bit encoding of F2255−19 is the usual little-
endian encoding of

{
0, 1, . . . , 2255 − 20

}
; � is the prime

2252 +27742317777372353535851937790883648493 from
[12]; d = −121665/121666 ∈ Fq ; and B is the unique point
(x, 4/5) ∈ E for which x is positive.

Curve25519 from [12] is the Montgomery curve v2 =
u3 + 486662u2 + u over the same field Fq . Bernstein and
Lange pointed out in [14, Section 2] that Curve25519 is
birationally equivalent to an Edwards curve, specifically
x2 + y2 = 1 + (121665/121666)x2 y2; the equivalence
is x = √

486664u/v and y = (u − 1)/(u + 1). As
above this Edwards curve is isomorphic to −x2 + y2 =
1 − (121665/121666)x2 y2 since −1 is a square in Fq . Our
choice of base point B corresponds to the choice u = 9 made
in [12].

Pseudorandom generation of r . ECDSA, like many other
signature systems, asks users to generate not merely a random
long-term secret key, but also a new random secret session
key r for each message to be signed. If r becomes public then,
assuming H(R, A, M) mod � �= 0, the long-term secret key
a can be simply computed as a = (S −r)/H(R, A, M) mod
�. If the same value r is ever used for 2 different messages
the secret key can be computed as well, as ElGamal noted
in [33, Note 2]. It was reported in [24] that the latter failure
had occurred in Sony’s ECDSA implementation for code-
signing for the PlayStation3, immediately revealing Sony’s
long-term secret key.

Furthermore, it is well known that ECDSA’s session keys
are much less tolerant than the long-term key of slight devi-
ations from randomness, even if the session keys are not
revealed or reused. For example, Nguyen and Shparlinski in
[62] presented an algorithm using lattice methods to compute

the long-term ECDSA key from the knowledge of as few as 3
bits of r for hundreds of signatures, whether this knowledge
is gained from side-channel attacks or from non-uniformity
of the distribution from which r is taken.

EdDSA avoids these issues by generating r = H(hb,

. . . , h2b−1, M), so that different messages will lead to differ-
ent, hard-to-predict values of r . No per-message randomness
is consumed. This idea of generating random signatures in a
secretly deterministic way, in particular obtaining pseudor-
andomness by hashing a long-term secret key together with
the input message, was proposed by Barwood in [9]; inde-
pendently by Wigley in [80]; a few months later in a patent
application [58] by Naccache, M’Raïhi, and Levy-dit-Vehel;
later by M’Raïhi, Naccache, Pointcheval, and Vaudenay in
[56]; and much later by Katz and Wang in [47]. The patent
application was abandoned in 2003.

Standard PRF hypotheses imply that this pseudorandom
session key r is indistinguishable from a truly random string
generated independently for each M , so there is no loss
of security. Well-known length-extension properties prevent
secret-prefix SHA-512 from being a PRF, but also do not
threaten the security of Ed25519-SHA-512, since r is not
visible to the attacker. All remaining SHA-3 candidates are
explicitly designed to be PRFs, and we will not hesitate to
recommend Ed25519-SHA-3 after SHA-3 is standardized.
It would of course also be safe to generate r with a cipher
such as AES, combined with standard PRF-stretching mech-
anisms to support a long input; but we prefer to reuse H to
save area in hardware implementations.

EdDSA samples r from the interval [0, 22b − 1], ensuring
almost uniformity of the distribution modulo �. The guide-
line [2, Section 4.1.1, Algorithm 2] specifies that the interval
should be of size at least [0, 2b+61 − 1], i.e., 64 bits more
than �; for Ed25519 there are 259 extra bits.

Comparison to previous ElGamal variants. The origi-
nal ElGamal system [33, Section III] predated elliptic-curve
cryptography; it instead used the multiplicative group F∗

q .
ElGamal took a large non-prime �, specifically � = q−1, and
focused on the case of prime q. ElGamal’s signatures were
pairs (R, S) of integers between 0 and q − 2 inclusive satis-
fying B H(M) = AR RS in F∗

q . See [33, equation (3)]; see also
[33, Attack 6] for the introduction of H . The signer, given M ,
generates a random r coprime to � and computes the signature
(R, S), where R = Br and S = r−1(H(M) − Ra) mod �.

Schnorr in [73] pointed out that one could safely work
in an order-� subgroup of F∗

q with a prime � much smaller
than q, saving most of the space for S. Schnorr also intro-
duced several other improvements to ElGamal’s system, as
discussed below.

ElGamal’s verification equation involves R as an element
of the group F∗

q and as a scalar, the exponent for A. For
more general groups one needs a function x mapping group

123

82 J Cryptogr Eng (2012) 2:77–89

elements to scalars. ECDSA works this way: it replaces F∗
q

with an order-� subgroup of an elliptic-curve group over
Fq and defines x(R) as the x-coordinate of R. ECDSA
also replaces A with −A, changing the signer’s subtrac-
tion into an addition and obtaining the verification equa-
tion H(M)B + x(R)A = S R. ECDSA replaces this three-
scalar equation with the equivalent two-scalar equation
S−1 H(M)B + S−1x(R)A = R at the expense of requir-
ing S to be invertible modulo �; note that both the signer and
the verifier compute inverses here.

Schnorr used a cryptographic hash function for x . This
has minimal expense and eliminates any concerns regard-
ing the mathematical structure of simpler functions x . Sch-
norr also compressed the group element R to the scalar
x(R): a Schnorr signature is (x(R), S) rather than (R, S).
Given a compressed signature (x(R), S), the verifier recom-
putes R as S−1 H(M)B + S−1x(R)A and checks that x(R)

matches; at this point the verifier knows a valid uncompressed
signature (R, S), so the compression cannot reduce secu-
rity.

Schnorr also merged the hashing of R with the hashing
of M . One way to understand this merging is to replace S
with x(R)S, and to impose the extra constraint x(R) �= 0,
obtaining the verification equation x(R)−1 H(M)B + A =
S R. There is no need for the multiplicative structure of
x(R)−1 H(M) here: one can instead use the verification equa-
tion H(R, M)B + A = S R, with the signer obtaining S as
r−1(H(R, M) + a) mod �. Schnorr actually used the equa-
tion SB = R + H(R, M)A, eliminating all inversions both
for the signer and for the verifier; this is an obvious advan-
tage, saving time and reducing code size.

The presence of R as input to the hash function provides
collision resilience: the attacker cannot break Schnorr’s sys-
tem by merely finding hash collisions. Neven, Smart, and
Warinschi in [61] proposed taking advantage of collision
resilience by choosing H to output only b/2 bits, reducing
the size of compressed signatures by 25%; but the same pro-
posal had actually appeared twenty years earlier in Schnorr’s
original paper [73, Section 2].

Practical use of Schnorr’s system was hampered by a pat-
ent (which expired in 2008), but the system became well
known to theoreticians, because the hashing of R allowed var-
ious security proofs. Some proofs use the “forking lemma”
to show that any generic-hash attack against Schnorr’s sys-
tem (i.e., any attack that works for arbitrary functions H)
can be converted into a DLP algorithm with a polynomial-
ly bounded, although often quite severe, loss of efficiency.
There are also theorems with a different loss of efficiency
for generic-group attacks (i.e., attacks that work for arbitrary
groups) under mild assumptions on H , and theorems with
no loss of efficiency for generic-group generic-hash attacks.
See, for example, [68], [75], [11], and [61]. We do not mean to
exaggerate the real-world relevance of “provable security”,

but we find it obvious that Schnorr’s system is a conservative,
well-studied signature system.

Our verification equation is the same as Schnorr’s verifi-
cation equation with double-size hashing instead of half-size
hashing, with A inserted as an extra hash input, and without
Schnorr’s compression of R. These modifications obviously
do not compromise security. The use of double-size hash-
ing helps alleviate concerns regarding hash-function secu-
rity; the use of A is an inexpensive way to alleviate concerns
that several public keys could be attacked simultaneously;
and the avoidance of compression allows an important ver-
ification speedup, as discussed in Section 5. We also reuse
the double-size hash to alleviate concerns regarding nonce
randomness, as discussed above.

3 Fast arithmetic modulo 2255 − 19

This section explains how our software represents elements
of the field F2255−19, and how our software performs efficient
field arithmetic. The machine instructions used in the soft-
ware are available on all 64-bit Intel and AMD CPUs, but we
target Intel’s Nehalem/Westmere CPUs.

Multipliers on Nehalem CPUs. Field multiplications (and
squarings) are the main bottlenecks in elliptic-curve perfor-
mance on most CPUs. The most important tool for fast field
multiplication is a fast CPU multiplication instruction. Neha-
lem CPUs offer three different multiplication instructions
that can be used to implement high-speed field arithmetic:

– The mulpd instruction can perform two double-precision
floating-point multiplications in SIMD fashion every
cycle. Newer Sandy Bridge CPUs include a vmulpd
instruction that can perform up to 4 double-precision float-
ing-point multiplications per cycle, but this instruction is
not available on our target CPUs.

– Themul instruction can multiply two 64-bit unsigned inte-
gers, producing a 128-bit result, every two cycles.

– The pmuldq/pmuludq instructions can perform two
multiplications of 32-bit integers, producing 64-bit results,
every cycle. The pmuldq instruction performs signed
multiplication; the pmuludq instruction performs
unsigned multiplication.

Multiplication and Edwards-curve arithmetic involve data-
level parallelism that we could exploit with mulpd and
pmuldq, but this approach would incur a serious overhead
of shuffle instructions needed to arrange data in registers as
described in, e.g., [26] and [60]. This overhead is eliminated
when several independent computations are run in parallel,
but two 64-bit results every cycle are not fundamentally bet-
ter than one 128-bit result every two cycles. We therefore
decompose field multiplication into multiplications of 64-bit
unsigned integers.

123

J Cryptogr Eng (2012) 2:77–89 83

Radix-264 representation. The standard way to split 255-bit
values into 64-bit limbs is a 4-limb, radix-264 representation.
Each element x of the field is represented as (x0, x1, x2, x3)

with x = ∑3
i=0 xi 264i . The multiplication of two elements

x and y is decomposed into 16 multiplications of 64-bit
unsigned integers; the 128-bit results are added up to produce
the result in 8 limbs r0, . . . , r7. Reduction modulo 2255 − 19
exploits the fact that 2256 ≡ 38, so 38 · r4 is added to r0,
38 · r5 to r1 and so on.

A detail worth noting of this representation is that it uses
256 bits to represent 255-bit field elements. We use this one
extra bit and do not always reduce modulo 2255 − 19 but
modulo 2256 − 38. For a similar representation this has been
shown to be useful for example in [17].

Our implementation of the signature scheme based on this
representation of field elements yields high performance on
many microprocessors such as AMD K10 or 65-nm Intel
Core 2 processors. However, on our target platform, the Intel
Nehalem/Westmere CPUs, this representation triggers a seri-
ous bottleneck. Every 128-bit result of the mul instruction is
produced in two 64-bit registers. Adding two of these results
requires two addition instructions. In the field multiplication
most of these additions produce carries; the carry bits need
to be handled by subsequent additions. The Intel Nehalem
and Westmere CPUs can perform three additions per cycle,
but only if these additions do not have to handle a carry bit
from a previous addition (add instruction). An add with carry
(adc instruction) can only be done once every two cycles;
i.e., carry bits decrease addition throughput by a factor of 6.
This bottleneck is triggered not only inside field multiplica-
tion and squaring but also inside additions.

Radix-251 representation. To reduce the number of expen-
siveadc/subc instructions, we instead represent an element
x of F2255−19 as (x0, x1, x2, x3, x4) with x = ∑4

i=0 xi 251i .
The 5 limbs are unsigned integers. We can represent each

element of the field F2255−19 with each xi ∈ [0, . . . , 251 −1].
In fact our implementation does not enforce these bounds
except for comparisons. Multiplication accepts inputs with
each limb having up to 54 bits and produces results of which
each limb can be only slightly larger than 251.

Multiplication and squaring. Schoolbook multiplication of
two field elements x and y, each represented in 5 unsigned
integers, takes 25mul instructions. The results are again pro-
duced in two 64-bit integer registers, but as both inputs have
only up to 54 bits, the value in the upper result register has
only up to 44 bits. Adding two multiplication results now
takes only one adc and one add instruction. Furthermore
reduction can be carried out simultaneously to multiplication.
For example, we do not compute a coefficient r5. Whenever
the result of a mul instruction belongs to r5, for example in
the multiplication of x2 · y3, we multiply one of the inputs
by 19 and add the result to r0. Similarly we do not compute

r6, r7, r8 and r9 but directly add into r1, . . . , r4. Multiplying
one input by 19 yields a result with less than 64 bits so we can
use the fasterimul instruction for these multiplications. The
5 result coefficients require 10 64-bit registers; the AMD64
architecture has 15 such registers, so we can keep the result
coefficients inside registers throughout the computation.

After the multiplication we need to reduce (carry) the 5
coefficients to obtain a result with coefficients that are at
most slightly larger than 251. Denote the two registers hold-
ing coefficient r0 as r00 and r01 with r0 = 264r01 + r00.
Similarly denote the two registers holding coefficient r1 as
r10 and r11. We first shift r01 left by 13, while shifting in
the most significant bits of r00 (shld instruction) and then
compute the logical and of r00 with 251 − 1. We do the same
with r10 and r11 and add r01 into r10 after the logical and with
251 −1. We proceed this way for coefficients r2, . . . , r4; reg-
ister r41 is multiplied by 19 before adding it to r00. Now all
5 coefficients fit into 64-bit registers but are still too large
to be used as input to another multiplication. We therefore
carry from r0 to r1, from r1 to r2, from r2 to r3, from r3 to
r4, and finally from r4 to r0. Each of these carries is done as
one copy, one right shift by 51, one logical and with 251 − 1,
and one addition.

Squaring needs only 15 mul instructions. Some inputs are
multiplied by 2; this is combined with multiplication by 19
where possible. The coefficient reduction after squaring is
the same as for multiplication.

Multiplication and squaring are implemented as sepa-
rate functions, but calls to these functions are used only for
inversion (see below). Edwards-curve arithmetic uses inlined
functions for point addition and doubling.

Addition, subtraction, and inversion. The results of addi-
tions do not have to be reduced if they are used as input to
a multiplication. Long sequences of additions that let coeffi-
cients grow larger than 54 bits would be a problem but we do
not have such sequences of additions. Field addition is there-
fore nothing but 5 integer additions without carries (add
instruction). Subtraction is slightly more expensive because
we use unsigned coefficients. Therefore we first add a multi-
ple of q and then perform subtraction. This costs 5 add and
5 sub instructions.

Inversion is implemented as exponentiation with expo-
nent q − 2. It uses the same sequence of 255 squarings and
11 multiplications as [12].

4 Signing messages

Signature generation has three steps: (1) computing r =
H(hb, . . . , h2b−1, M); (2) computing R = r B; (3) comput-
ing S = (r + H(R, A, M)a) mod �.

Our primary concern is with short messages M , obviously
the top concern for a server trying to keep up with a given

123

84 J Cryptogr Eng (2012) 2:77–89

volume of data; longer messages take more cycles per sig-
nature but far fewer cycles per byte. The computations of
H take negligible time for short messages. The reduction
modulo � also takes negligible time with standard branchless
techniques. For the rest of this section we focus on the main
signing bottleneck, namely computing r B given r .

High-level strategy. We begin by computing the 253-bit inte-
ger r mod �. We then write r mod � as r0 + 16r1 + · · · +
1663r63 with

ri ∈{−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7}.

For each i we look up 16i |ri |B in a precomputed table, and
then conditionally negate 16i |ri |B to obtain 16i ri B. Finally
we compute r B as

∑
i 16i ri B.

There is nothing new in our computation at this level.
Computing r B as a sum of precomputed pieces is a special
case of a standard scalar-multiplication algorithm published
by Pippenger in [65] (subsequently reinvented in [19] and
[50]); allowing negative coefficients is a standard tweak. The
devil lies in the lower-level details — choosing the optimal
radix 16, and computing 16i ri B and

∑
i 16i ri B as efficiently

as possible. These details are discussed below.

Low level, part 1: table lookups. Recall that, as a side-chan-
nel defense, we prohibit secret array indices. In particular, we
cannot use |ri | as an array index. We instead load all table
entries 0B, 16i B, 2 · 16i B, 3 · 16i B, 4 · 16i B, 5 · 16i B, 6 ·
16i B, 7 · 16i B, 8 · 16i B and use arithmetic operations, with-
out branching, to combine the table entries into 16i |ri |B. We
similarly use arithmetic operations to compute 16i ri B from
16i |ri |B and −16i |ri |B.

We actually store table entries only for i ∈ {0, 2, 4,

. . . , 62}, at the expense of 4 elliptic-curve doublings. The
table then contains 8 · 32 = 256 curve points (aside from
0B, which is not stored). Each point is represented as three
integers (see below) modulo 2255−19. Each integer in turn is
represented as five 8-byte words. Overall the table consumes
30 kilobytes of RAM.

We could instead use radix 32 or larger. Radix 32 would
involve twice as many table loads (since we load all table
entries), and twice as much arithmetic to combine table
entries, but these costs would be outweighed by the bene-
fit of fewer elliptic-curve additions. A more serious concern
is that the table would be twice as large, consuming 60KB
instead of 30KB. This is only a minor issue for a typical
cryptographic speed test on our target CPUs (each Neha-
lem/Westmere core has its own fast 256KB L2 cache effi-
ciently handling our sequential loads), but 30KB is clearly
more attractive inside a larger application that needs to fit
several different subroutines into L2 cache.

In the opposite direction, we could chop the table in half
again at the expense of 8 more doublings; we could also

switch to radix 8, 4, or 2. These changes would also allow
reasonably fast signing on much smaller CPUs.

Low level, part 2: elliptic-curve addition. We use extended
coordinates for the twisted Edwards curve −x2 + y2 = 1 +
dx2 y2, as proposed by Hisil, Wong, Carter, and Dawson in
[41]. These coordinates are (X : Y : Z : T) with XY = Z T
representing x = X/Z and y = Y/Z . The addition formulas
from [41, Section 3.1] are complete for our curve and use
just 9 field multiplications to add a table entry (x0, y0) into
(X : Y : Z : T). Note that these formulas rely on the −1 in
−x2; this is why EdDSA uses the −1 twist.

One of the field multiplications is a multiplication by
d = −121665/121666. We could replace this with a small
number of multiplications by 121665 and 121666, as in [13,
Section 6], but our current software treats d as a generic field
element to save code size. We considered switching to a new
curve using a small integer d (such as 646, which has a near-
prime group order; note that we do not need the twist security
of Curve25519), but decided that the resulting speedup was
too small to justify departing from an established curve.

A different way to save a multiplication is to use the dual
addition formulas from [41, Section 3.2]. However, those for-
mulas are not complete; they would require a detailed analy-
sis of intermediate results in our computation to see whether
any of the intermediate additions could trigger any of the
exceptional cases in the formulas.

Instead we represent a precomputed point (x0, y0) as
(y0 − x0, y0 + x0, 2dx0 y0). These values depend only on
x0 and y0 and are usually computed in the first part of addi-
tion in extended coordinates; providing them as part of the
precomputation saves the multiplication by d, the multiplica-
tion x0 y0, and 2 field additions, at the expense of increasing
the storage requirements by a factor of 1.5.

Template attacks. We comment that for hardware imple-
mentations this type of precomputation reduces the informa-
tion exposed to template attacks trying to link multiple uses
of the same precomputed point.

Consider, for example, an attacker monitoring the power
consumption of a device with very limited memory. Assume
that the device designer has reduced the table described above
to just B, 2B, . . . , 8B at the expense of many doublings,
and has saved more memory by storing a table entry as sim-
ply (x0, y0). The addition formulas then begin by computing
y0 −x0, y0 +x0, etc. If the same table entry is used again later
then the same subtraction, addition, etc. will be performed
again, resulting in exactly the same power trace. The attacker
can therefore partition the loaded points into (at most) 16 dif-
ferent groups, obtaining 55 bits of information on average,
as discussed in [31, Section 5.1.2].

Precomputing y0 − x0, y0 + x0, etc. guarantees (for these
addition formulas) that all operations involving the precom-
puted point also involve the intermediate point, which varies

123

J Cryptogr Eng (2012) 2:77–89 85

unpredictably between different uses of the same table entry.
A closer look at field arithmetic sometimes reveals lower-
level operations that depend on only one input, such as the
preliminary additions in Karatsuba’s method; the results of
those operations can be similarly precomputed.

Of course, there is much more to say about countermea-
sures to hardware side-channel attacks; we do not claim that
any single countermeasure is adequate by itself. The soft-
ware situation is simpler, since the side channels exposed to
an attacker are much more limited.

Results. Overall we spend a bit less than 1000 cycles for each
iteration of our main signing loop, i.e., for one table lookup
and one elliptic-curve mixed addition. We also spend about
21000 cycles to invert Z at the end of the computation. The
complete signing procedure for a short message takes 87548
cycles.

5 Verifying signatures

Fast signature verification seems considerably more diffi-
cult than fast signature generation, for two reasons. First,
the verifier has to recover the elliptic-curve points A and
R from the compressed points A and R. Second, checking
SB = R+H(R, A, M)A seems to require not merely a fixed-
base scalar multiplication SB but also a much more expensive
variable-base scalar multiplication H(R, A, M)A. This sec-
tion explains several techniques that we use to address these
problems.

Fast decompression. Recall that the encoding R of a point
R = (x, y) contains a straightforward encoding of y but
contains only a sign bit for x . One must therefore recover
x via the equation x = ±√

(y2 − 1)/(dy2 + 1); note that
dy2+1 �= 0 since −d is not a square. The division and square
root here seem to involve two exponentiations, about twice
as expensive as the usual Weierstrass-curve decompression.

Of course, we could use Montgomery’s trick to merge the
two divisions involved in decompressing two points, but two
square roots and a division are still more expensive than two
Weierstrass-curve decompressions. We could also skip the
compression and decompression for applications willing to
use 64-byte keys and 96-byte signatures; but we think that
32-byte keys and 64-byte signatures are considerably more
attractive.

To save time we look more closely at the standard com-
putation of square roots in Fq . The prime q = 2255 − 19
is congruent to 5 modulo 8, so any square α ∈ Fq satisfies
α2 = β4 where β = α(q+3)/8, i.e., ±α = β2. The stan-
dard computation is a single exponentiation to compute β,
followed by a quick multiplication of β by

√−1 if β2 = −α.
In the decompression context we are given α as a fraction

u/v, where u = y2−1 and v = dy2+1. Instead of computing

α we merge the division with the square-root computation:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

We check whether β2 = −α by checking whether vβ2 =
−u, and if so we multiply β by

√−1. The entire computa-
tion of

√
u/v, starting from u and v, takes just a few multi-

plications more than a single exponentiation. In other words,
Edwards-curve decompression is as inexpensive as Weierst-
rass-curve decompression.

Fast single-signature verification. To verify a single sig-
nature we use standard techniques for double-scalar mul-
tiplication to compute SB − H(R, A, M)A, and we then
check whether the result is the same as R. (We actually check
whether the encoding of the result is the same as the encoding
of R, so that we can skip decompression of R.) The speed of
Edwards-curve addition, especially with the −1 twist, makes
these techniques particularly efficient; using the tables dis-
cussed in Section 4 does not seem to offer any advantage.
This computation fits in very little space.

We have also considered the verification method sug-
gested by Antipa, Brown, Gallant, Lambert, Struik, and Van-
stone in [7], but our very efficient elliptic-curve arithmetic
makes the overheads in this method — extra decompression
and a Euclidean computation — much more troublesome. In
the batch context discussed below, the only extra overhead
of the method of [7] would be the Euclidean computation,
but the benefit would also be much smaller.

Fast batch verification. For any system bottlenecked by sig-
nature verification, the problem is not to verify one signature
at a time, but to verify many signatures as quickly as possible.

Naccache, M’Raïhi, Vaudenay, and Raphaeli in [59, Sec-
tion 2.2] proposed verifying a batch of linear signature
equations by verifying a random linear combination of the
equations. This proposal is not directly applicable to ElG-
amal, DSA, Schnorr, ECDSA, etc., because all of those
systems require computing linear functions (to compute R)
rather than merely verifying linear functions; but if R is trans-
mitted instead of H(· · ·), as suggested in [59], then this prob-
lem disappears.

Unfortunately, the verification algorithm in [59] was quite
slow: [59, Table 1] reported “29n” multiplications to verify
n signatures from the same signer at a highly questionable
220 security level. If the same technique were adapted to
ECDSA and increased to a 2128 security level then it would
require nearly 200 elliptic-curve additions for each signature
from the same signer—somewhat faster than verifying each
signature separately, but not much.

The followup paper [10] by Bellare, Garay, and Rabin
proposed a more complicated verification technique using,
e.g., 3200 multiplications to verify 100 exponentiations, or

123

86 J Cryptogr Eng (2012) 2:77–89

6480 multiplications to verify 100 DSA signatures, in both
cases at a substandard 260 security level. See [10, Appendix
A.1]. The number of multiplications per signature begins to
drop as the batch size grows towards 1000 — see [10, Figure
3] — but such large batches do not fit into cache on typical
CPUs.

The unimpressive theoretical performance of these batch-
verification techniques can be traced directly to the naive
exponentiation algorithms used in [59] and [10]. We do
much better by using random linear combinations, as in
[59], together with state-of-the-art scalar-multiplication tech-
niques.

Specifically, we start from a batch of (Mi , Ai , Ri , Si)

where (Ri , Si) is an alleged signature of Mi under key Ai .
We choose independent uniform random 128-bit integers zi ,
compute Hi = H(Ri , Ai , Mi), and verify the equation

(
−

∑
i

zi Si mod �

)
B+

∑
i

zi Ri +
∑

i

(zi Hi mod �)Ai =0

by a multi-scalar multiplication. It is important to choose new
independent integers zi uniformly at random in each batch
verification. There are two reasonable choices of scalar-mul-
tiplication methods here, namely Pippenger’s method in [65]
and the Bos–Coster method reported in [27, Section 4]. We
use the Bos–Coster method because it fits into less storage;
see below for details. Note that zi is not secret, so side-chan-
nel protection is not required.

The number of scalars here is 2n+1. Half of the scalars are
253-bit and half are 128-bit. If public keys appear repeatedly,
the situation considered in [59] and [10], then we could save
some time by merging the 253-bit scalars; this merging also
explains why we do not use the similar signature equation
SB = A + H(R, A, M)R, which would allow only merg-
ing 128-bit scalars. Our software focuses on general-purpose
verification with arbitrary keys.

If verification succeeds then we are confident that 8Si B =
8Ri + 8Hi Ai for each i , i.e., that each signature is valid.
The logic is simple: the differences Pi = 8Ri + 8Hi Ai −
8Si B are elements of a cyclic group of prime order �, and
have been verified to satisfy

∑
i zi Pi = 0; but this equa-

tion cannot hold with probability more than 2−128 unless all
Pi = 0. For example, if P4 is nonzero then the choices of
z1, z2, z3, z5, z6, . . . determine exactly one choice of z4 sat-
isfying

∑
i zi Pi = 0, and z4 has chance at most 2−128 of

matching that choice.
If verification fails then there must be at least one invalid

signature. We then fall back to verifying each signature sep-
arately. There are several techniques to identify a small num-
ber of invalid signatures in a batch, but all known techniques
become slower than separate verification as the number of

invalid signatures increases; separate verification provides
the best defense against denial-of-service attacks.

Fast multi-scalar multiplication. The Bos–Coster method
mentioned above is as follows: to compute n1 P1+n2 P2+· · ·,
where n1 ≥ n2 ≥ · · ·, we recursively compute (n1−n2)P1+
n2(P1 + P2)+· · ·. For n1 much larger than n2, say 2k+1n2 >

n1 ≥ 2kn2, we could gain speed by instead recursively com-
puting (n1 − 2kn2)P1 + n2(2k P1 + P2) + · · ·, but we have
found this to occur so rarely that checking for it is not worth-
while.

We keep the scalars ni in a heap so that identifying the
two largest scalars is easy. The usual method to replace the
root of a heap is top-down, starting at the root and swapping
down for a variable number of steps. We instead use Floyd’s
1964 bottom-up algorithm discussed in [48, Exercise 5.2.3–
18] (often miscredited to [25] and [79]): start at the root,
swap down to the bottom, and then swap up for a variable
number of steps. This has the advantage of somewhat reduc-
ing the number of comparisons, and the not-so-well-known
advantage of drastically reducing the number of branches,
especially for balanced heaps.

Results. The complete verification procedure takes under
134000 cycles per signature for batch size 64. Our batch-
verification software is included in, although not yet bench-
marked by, the public eBATS benchmarking framework.

Doubling the batch size to 128 no longer fits into L1 cache
but still improves performance on our target CPU, taking
under 125000 cycles per signature. Larger batches take under
114000 cycles per signature while still fitting into L2 cache.
Our software spends about 44000 cycles on decompression,
so verification of uncompressed signatures (32 extra bytes)
using uncompressed public keys (another 32 extra bytes)
would take only about 81000 cycles for batch size 128, even
faster than signing. However, in this paper we have empha-
sized the performance that we obtain without using so much
space.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. (no editor): 17th annual symposium on foundations of computer
science, IEEE Computer Society, 1976. MR 56:1766. See [65]

2. (no editor): Technical guideline TR-03111, elliptic curve cryptog-
raphy (2009). URL:https://www.bsi.bund.de/SharedDocs/Down
loads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/
BSI-TR-03111_pdf.pdf?_blob=publicationFile. Citations in this
document: §2

3. (no editor): SPEED: software performance enhancement for
encryption and decryption, 2007. URL:http://www.hyperelliptic.
org/SPEED. See [35]

123

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?_blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?_blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03111/BSI-TR-03111_pdf.pdf?_blob=publicationFile
http://www.hyperelliptic.org/SPEED
http://www.hyperelliptic.org/SPEED

J Cryptogr Eng (2012) 2:77–89 87

4. (no editor): Proceedings of the 6th ACM symposium on informa-
tion, computer and communications security, Hong Kong, March
22–24, 2011, Association for Computing Machinery, 2011. ISBN
978-1-4503-0564-8. See [71]

5. Abdalla, M., Barreto, P.S.L.M. (editors): Progress in cryptology—
LATINCRYPT 2010, first international conference on cryptology
and information security in Latin America, Puebla, Mexico, August
8–11, 2010, proceedings, Lecture Notes in Computer Science,
6212, Springer, 2010. ISBN 978-3-642-14711-1. See [60]

6. Abe, M. (editor): Advances in cryptology—ASIACRYPT 2010,
16th international conference on the theory and application of cryp-
tology and information security, Singapore, December 5–9, 2010,
proceedings, Lecture Notes in Computer Science, 6477, Springer,
2010. ISBN 978-3-642-17372-1. See [38]

7. Antipa, A., Brown, D.R.L., Gallant, R.P., Lambert, R.J., Struik, R.,
Vanstone, S.A.: Accelerated verification of ECDSA signatures, in
SAC 2005 [70] (2006), 307–318. MR 2007d:94044. URL:http://
www.cacr.math.uwaterloo.ca/techreports/2005/tech_reports2005.
html. Citations in this document: §5, §5

8. Atluri, V., Jaeger, T. (program chairs): Proceedings of the 10th
ACM conference on computer and communications security, ACM
Press, 2003. ISBN 1-58113-738-9. See [47]

9. Barwood, G.: Digital signatures using elliptic curves, message
32f519ad. 19609226@news.dial.pipex.com posted to sci.crypt
(1997). URL:http://groups.google.com/group/sci.crypt/msg/b28a
ba37180dd6c6. Citations in this document: §2

10. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification
for modular exponentiation and digital signatures, in Eurocrypt
’98 [63] (1998), 236–250. URL:http://cseweb.ucsd.edu/~mihir/
papers/batch.html. Citations in this document: §5, §5, §5, §5, §5

11. Bellare, M., Neven, G.: Multi-signatures in the plain public-key
model and a general forking lemma, in CCS 2006 [45] (2006), 390–
399. URL:http://cseweb.ucsd.edu/~mihir/papers/multisignatures.
html. Citations in this document: §2

12. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records,
in PKC 2006 [82] (2006), 207–228. URL:http://cr.yp.to/papers.
html#curve25519. Citations in this document: §1, §1, §2, §2, §2,
§2, §3

13. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.:
Twisted Edwards curves, in Africacrypt 2008 [78] (2008), 389–
405. URL:http://eprint.iacr.org/2008/013. Citations in this docu-
ment: §2, §2, §4

14. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic
curves, in Asiacrypt 2007 [49] (2007), 29–50. URL:http://eprint.
iacr.org/2007/286. Citations in this document: §2, §2

15. Bernstein, D.J., Lange, T. (editors): eBACS: ECRYPT Benchmark-
ing of Cryptographic Systems, accessed 19 September 2011 (2011).
URL:http://bench.cr.yp.to. Citations in this document: §1

16. Blakley, G.R., Chaum, D. (editors): Advances in cryptology, pro-
ceedings of CRYPTO ’84, Santa Barbara, California, USA, August
19–22, 1984, proceedings, Lecture Notes in Computer Science,
196, Springer, Berlin, 1985. ISBN 3-540-15658-5. MR 86j:94003.
See [32]

17. Bos, J.W.: High-performance modular multiplication on the Cell
processor, in WAIFI 2010 [39] (2010), 7–24. Citations in this doc-
ument: §3

18. Brassard, G. (editor): Advances in cryptology—CRYPTO ’89, 9th
annual international cryptology conference, Santa Barbara, Cal-
ifornia, USA, August 20–24, 1989, proceedings, Lecture Notes
in Computer Science, 435, Springer, Berlin, 1990. ISBN 3-540-
97317-6. MR 91b:94002. See [73]

19. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast
exponentiation with precomputation (extended abstract), in Eu-
rocrypt ’92 [72] (1993), 200–207; see also newer version [20].
URL:http://cr.yp.to/bib/entries.html#1993/brickell-exp. Citations
in this document: §4

20. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast
exponentiation with precomputation: algorithms and lower bounds
(1995); see also older version [19]. URL:http://research.microsoft.
com/~dbwilson/bgmw/

21. Brown, M., Hankerson, D., López, J., Menezes, A.: Software
implementation of the NIST elliptic curves over prime fields
(2000); see also newer version [22]. URL:http://www.cacr.math.
uwaterloo.ca/techreports/2000/corr2000-56.ps. Citations in this
document: §1, §1

22. Brown, M., Hankerson, D., López, J., Menezes, A.: Software
implementation of the NIST elliptic curves over prime fields, in
CT-RSA 2001 [57] (2001), 250–265; see also older version [21].
MR 1907102

23. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks, in
Asiacrypt 2009 [54] (2009), 667–684. Citations in this document:
§1

24. “Bushing”, Hector Martin “marcan” Cantero, Segher Boessen-
kool, Sven Peter, PS3 epic fail (2010). URL:http://events.ccc.
de/congress/2010/Fahrplan/attachments/1780_27c3_console_
hacking_2010.pdf. Citations in this document: §2

25. Carlsson, S.: Average-case results on heapsort, BIT 27 (1987), 2–
17. Citations in this document: §5

26. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on
the Cell Broadband Engine, in Africacrypt 2009 [69] (2009),
368–385. URL:http://cryptojedi.org/users/peter/#celldh. Citations
in this document: §3

27. de Rooij, P.: Efficient exponentiation using precomputation and
vector addition chains, in Eurocrypt ’94 [28] (1995), 389–399. MR
1479665. Citations in this document: §5

28. De Santis, A. (editor): Advances in cryptology—EUROCRYPT
’94, workshop on the theory and application of cryptographic tech-
niques, Perugia, Italy, May 9–12, 1994, proceedings, Lecture Notes
in Computer Science, 950, Springer, Berlin, 1995. ISBN 3-540-
60176-7. MR 98h:94001. See [27], [59]

29. Desmedt, Y. (editor): Advances in cryptology—CRYPTO ’94, 14th
annual international cryptology conference, Santa Barbara, Cal-
ifornia, USA, August 21–25, 1994, proceedings, Lecture Notes
in Computer Science, 839, Springer, Berlin, 1994. ISBN 3-540-
58333-5. See [50]

30. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanal-
ysis of SFLASH, in Crypto 2007 [55] (2007), 1–12. URL:http://
eprint.iacr.org/2007/141. Citations in this document: §1

31. Duif, N.: Smart card implementation of a digital signature scheme
for Twisted Edwards curves, M.A. thesis, Technische Universi-
teit Eindhoven, 2011. URL:http://www.nielsduif.nl/2011_05_20_
report_final.pdf. Citations in this document: §4

32. ElGamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms, in Crypto ’84 [16] (1985), 10–18; see
also newer version [33]. MR 87b:94037

33. ElGamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms, IEEE Transactions on Information
Theory 31 (1985), 469–472; see also older version [32]. ISSN 0018-
9448. MR 86j:94045. Citations in this document: §2, §2, §2, §2,
§2

34. Galbraith, S., Lin, X., Scott, M.: Endomorphisms for faster elliptic
curve cryptography on a large class of curves, in Eurocrypt 2009
[43] (2009), 518–535. URL:http://eprint.iacr.org/2008/194. Cita-
tions in this document: §1, §1, §1

35. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-
based key exchanges, in SPEED [3] (2007), 49–64. URL:http://
www.loria.fr/~gaudry/papers.en.html. Citations in this document:
§1

36. Gligoroski, D., Odegøard, R.S., Jensen, R.E., Perret, L., Faugère,
J.-C., Knapskog, S.J., Markovski, S.: The digital signature scheme
MQQ-SIG (2010). URL:http://eprint.iacr.org/2010/527.pdf. Cita-
tions in this document: §1

123

http://www.cacr.math.uwaterloo.ca/techreports/2005/tech_reports2005.html
http://www.cacr.math.uwaterloo.ca/techreports/2005/tech_reports2005.html
http://www.cacr.math.uwaterloo.ca/techreports/2005/tech_reports2005.html
http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
http://cseweb.ucsd.edu/~mihir/papers/batch.html
http://cseweb.ucsd.edu/~mihir/papers/batch.html
http://cseweb.ucsd.edu/~mihir/papers/multisignatures.html
http://cseweb.ucsd.edu/~mihir/papers/multisignatures.html
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
http://eprint.iacr.org/2008/013
http://eprint.iacr.org/2007/286
http://eprint.iacr.org/2007/286
http://bench.cr.yp.to
http://cr.yp.to/bib/entries.html#1993/brickell-exp
http://research.microsoft.com/~dbwilson/bgmw/
http://research.microsoft.com/~dbwilson/bgmw/
http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-56.ps
http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-56.ps
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://cryptojedi.org/users/peter/#celldh
http://eprint.iacr.org/2007/141
http://eprint.iacr.org/2007/141
http://www.nielsduif.nl/2011_05_20_report_final.pdf
http://www.nielsduif.nl/2011_05_20_report_final.pdf
http://eprint.iacr.org/2008/194
http://www.loria.fr/~gaudry/papers.en.html
http://www.loria.fr/~gaudry/papers.en.html
http://eprint.iacr.org/2010/527.pdf

88 J Cryptogr Eng (2012) 2:77–89

37. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature
schemes with tight reductions to the Diffie–Hellman problems,
Journal of Cryptology 20 (2007), 493–514. URL:http://www.cs.
umd.edu/~jkatz/papers.html. See [47]

38. Granger, R.: On the static Diffie–Hellman problem on elliptic
curves over extension fields, in Asiacrypt 2010 [6] (2010), 283–
302. URL:http://eprint.iacr.org/2010/177. Citations in this docu-
ment: §1

39. Hasan, M.A., Helleseth, T. (editors): Arithmetic of finite fields,
third international workshop, WAIFI 2010, Istanbul, Turkey, June
27–30, 2010, proceedings, Lecture Notes in Computer Science,
6087, Springer, 2010. ISBN 978-3-642-13796- 9. See [17]

40. Hisil, H.: Elliptic curves, group law, and efficient computa-
tion, Ph.D. thesis, Queensland University of Technology, 2010.
URL:http://eprints.qut.edu.au/33233. Citations in this document:
§1

41. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted
Edwards curves revisited, in Asiacrypt 2008 [64] (2008), 326–343.
URL:http://eprint.iacr.org/2008/522. Citations in this document:
§4, §4, §4

42. Hu, Z., Longa, P., Xu, M.: Implementing 4-dimensional GLV
method on GLS elliptic curves with j-invariant 0, 15 June 2011
version, accessed 11 July 2011 (2011). URL:http://eprint.iacr.org/
2011/315. Citations in this document: §1, §1, §1, §1

43. Joux, A. (editor): Advances in cryptology—EUROCRYPT 2009,
28th annual international conference on the theory and applica-
tions of cryptographic techniques, Cologne, Germany, April 26–
30, 2009, proceedings, Lecture Notes in Computer Science, 5479,
Springer, 2009. ISBN 978-3-642-01000-2. See [34]

44. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over
small degree extension fields. Application to the static Diffie–Hell-
man problem on E(Fq5) (2010). URL:http://eprint.iacr.org/2010/
157. Citations in this document: §1

45. Juels, A., Wright, R.N., De Capitani di Vimercati, S. (editors): Pro-
ceedings of the 13th ACM conference on computer and commu-
nications security, CCS 2006, Alexandria, VA, USA, October 30–
November 3, 2006, Association for Computing Machinery, (2006).
See [11]

46. Käsper, E.: Fast elliptic curve cryptography in OpenSSL, in 2nd
Workshop on Real-Life Cryptographic Protocols and Standardiza-
tion (RLCPS 2011), to appear (2011). Citations in this document:
§1, §1

47. Katz, J., Wang, N.: Efficiency improvements for signature schemes
with tight security reductions, in CCS 2003 [8] (2003), 155–
164; portions incorporated into [37]. URL:http://www.cs.umd.edu/
~jkatz/papers.html. Citations in this document: §2

48. Knuth, D.E.: The art of computer programming, volume 3: sorting
and searching, 2nd edition, Addison-Wesley, Reading, 1998. ISBN
0-201-89685-0. Citations in this document: §5

49. Kurosawa, K. (editor): Advances in cryptology—ASIACRYPT
2007, 13th international conference on the theory and application of
cryptology and information security, Kuching, Malaysia, Decem-
ber 2–6, 2007, proceedings, Lecture Notes in Computer Science,
4833, Springer, 2007. ISBN 978-3-540-76899-9. See [14]

50. Lim, C.H., Lee, P.J.: More flexible exponentiation with precom-
putation, in [29] (1994), 95–107. Citations in this document:
§4

51. Longa, P.: Speed benchmarks for elliptic curve scalar multiplica-
tion, accessed 11 July 2011 (2011). URL:http://www.patricklonga.
bravehost.com/speed_ecc.html. Citations in this document: §1,
§1

52. Longa, P., Gebotys, C.H.: Efficient techniques for high-speed ellip-
tic curve cryptography, in CHES 2010 [53] (2010), 80–94. Citations
in this document: §1, §1, §1

53. Mangard, S., Standaert, F.-X. (editors): Cryptographic hardware
and embedded systems, CHES 2010, 12th international workshop,

Santa Barbara, CA, USA, August 17–20, 2010, proceedings, Lec-
ture Notes in Computer Science, 6225, Springer, 2010. ISBN 978-
3-642-15030-2. See [52]

54. Matsui, M. (editor): Advances in cryptology—ASIACRYPT 2009,
15th international conference on the theory and application of
cryptology and information security, Tokyo, Japan, December 6–
10, 2009, proceedings, Lecture Notes in Computer Science, 5912,
Springer, 2009. ISBN 978-3-642-10365-0. See [23]

55. Menezes, A. (editor): Advances in cryptology—CRYPTO 2007,
27th annual international cryptology conference, Santa Barbara,
CA, USA, August 19–23, 2007, proceedings, Lecture Notes in
Computer Science, 4622, Springer, 2007. ISBN 978-3-540-74142-
8. See [30]

56. M’Raïhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Compu-
tational alternatives to random number generators, in SAC ’98 [77]
(1999), 72–80. URL:http://www.di.ens.fr/~pointche/Documents/
Papers/1998_sac.pdf. Citations in this document: §2

57. Naccache, D. (editor): Topics in cryptology—CT-RSA 2001: the
cryptographers’ track at RSA Conference 2001, San Francisco,
CA, USA, April 2001, proceedings, Lecture Notes in Com-
puter Science, 2020, Springer, 2001. ISBN 3-540-41898-9. MR
2003a:94039. See [22]

58. Naccache, D., M’Raïhi, D., Levy-dit-Vehel, F.: Patent appli-
cation WO/1998/051038: pseudo-random generator based on a
hash coding function for cryptographic systems requiring ran-
dom drawing (1997). URL:http://www.wipo.int/pctdb/en/ia.jsp?
IA=FR1998000901. Citations in this document: §2

59. Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A.
be improved? Complexity trade-offs with the digital signature stan-
dard, in Eurocrypt ’94 [28] (1994). Citations in this document: §5,
§5, §5, §5, §5, §5, §5

60. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed
records for cryptographic pairings, in Latincrypt 2010 [5] (2010),
109–123. URL:http://cryptojedi.org/users/peter/#dclxvi. Citations
in this document: §3

61. Neven, G., Smart, N.P., Warinschi, B.: Hash function require-
ments for Schnorr signatures, Journal of Mathematical Cryptology
3 (2009), 69–87. URL:http://www.zurich.ibm.com/~nev/papers/
schnorr.html. Citations in this document: §2, §2

62. Nguyen, P.Q., Shparlinski, I.: The insecurity of the elliptic curve
digital signature algorithm with partially known nonces, Designs,
Codes and Cryptography 30, 201–217 (2003). Citations in this doc-
ument: §2

63. Nyberg, K. (editor): Advances in cryptology—EUROCRYPT ’98,
international conference on the theory and application of crypto-
graphic techniques, Espoo, Finland, May 31–June 4, 1998, pro-
ceedings, Lecture Notes in Computer Science, 1403, Springer,
1998. ISBN 3-540-64518-7. See [10]

64. Pieprzyk, J. (editor): Advances in cryptology—ASIACRYPT
2008, 14th international conference on the theory and applica-
tion of cryptology and information security, Melbourne, Australia,
December 7–11, 2008, Lecture Notes in Computer Science, 5350,
2008. ISBN 978-3-540-89254-0. See [41]

65. Pippenger, N.: On the evaluation of powers and related problems
(preliminary version), in FOCS ’76 [1] (1976), 258–263; newer
version split into [66] and [67]. MR 58:3682. URL:http://cr.yp.to/
bib/entries.html#1976/pippenger. Citations in this document: §4,
§5

66. Pippenger, N.: The minimum number of edges in graphs with
prescribed paths, Mathematical Systems Theory 12 (1979), 325–
346; see also older version [65]. ISSN 0025-5661. MR 81e:05079.
URL:http://cr.yp.to/bib/entries.html#1976/pippenger

67. Pippenger, N.: On the evaluation of powers and monomials, SIAM
Journal on Computing 9 (1980), 230–250; see also older version
[65]. ISSN 0097-5397. MR 82c:10064. URL:http://cr.yp.to/bib/
entries.html#1976/pippenger

123

http://www.cs.umd.edu/~jkatz/papers.html
http://www.cs.umd.edu/~jkatz/papers.html
http://eprint.iacr.org/2010/177
http://eprints.qut.edu.au/33233
http://eprint.iacr.org/2008/522
http://eprint.iacr.org/2011/315
http://eprint.iacr.org/2011/315
http://eprint.iacr.org/2010/157
http://eprint.iacr.org/2010/157
http://www.cs.umd.edu/~jkatz/papers.html
http://www.cs.umd.edu/~jkatz/papers.html
http://www.patricklonga.bravehost.com/speed_ecc.html
http://www.patricklonga.bravehost.com/speed_ecc.html
http://www.di.ens.fr/~pointche/Documents/Papers/1998_sac.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/1998_sac.pdf
http://www.wipo.int/pctdb/en/ia.jsp?IA=FR1998000901
http://www.wipo.int/pctdb/en/ia.jsp?IA=FR1998000901
http://cryptojedi.org/users/peter/#dclxvi
http://www.zurich.ibm.com/~nev/papers/schnorr.html
http://www.zurich.ibm.com/~nev/papers/schnorr.html
http://cr.yp.to/bib/entries.html#1976/pippenger
http://cr.yp.to/bib/entries.html#1976/pippenger
http://cr.yp.to/bib/entries.html#1976/pippenger
http://cr.yp.to/bib/entries.html#1976/pippenger
http://cr.yp.to/bib/entries.html#1976/pippenger

J Cryptogr Eng (2012) 2:77–89 89

68. Pointcheval, D., Stern, J.: Security arguments for digital signa-
tures and blind signatures, Journal of Cryptology 13 (2000), 361–
396. URL:ftp://ftp.di.ens.fr/pub/users/pointche/Papers/2000_joc.
pdf. Citations in this document: §2

69. Preneel, B. (editor): Progress in cryptology—AFRICACRYPT
2009, second international conference on cryptology in Africa,
Gammarth, Tunisia, June 21–25, 2009, proceedings, Lecture Notes
in Computer Science, 5580, Springer, 2009. See [26]

70. Preneel, B., Tavares, S.E. (editors): Selected areas in cryptogra-
phy, 12th international workshop, SAC 2005, Kingston, ON, Can-
ada, August 11–12, 2005, revised selected papers, Lecture Notes
in Computer Science, 3897, Springer, 2006. ISBN 3-540-33108-5.
MR 2007b:94002. See [7]

71. Rangasamy, J., Stebila, D., Boyd, C., Nieto, J.G.: An integrated
approach to cryptographic mitigation of denial-of-service attacks,
in ASIACCS 2011 [4] (2011). URL:http://www.douglas.stebila.
ca/files/research/papers/RSBG11.pdf. Citations in this document:
§1

72. Rueppel, R.A. (editor): Advances in cryptology—EUROCRYPT
’92, workshop on the theory and application of cryptographic tech-
niques, Balatonfüred, Hungary, May 24–28, 1992, proceedings,
Lecture Notes in Computer Science, 658, Springer, Berlin, 1993.
ISBN 3-540-56413-6. MR 94e:94002. See [19]

73. Schnorr, C.P.: Efficient identification and signatures for smart
cards, in Crypto ’89 [18] (1990), 239–252; see also newer version
[74]. Citations in this document: §2, §2, §2

74. Schnorr, C.P.: Efficient signature generation by smart cards,
Journal of Cryptology 4 (1991), 161–174; see also older
version [73]. URL:http://www.mi.informatik.uni-frankfurt.de/
research/papers.html

75. Schnorr, C.P., Jakobsson, M.: Security of discrete log cryptosys-
tems in the random oracle + generic model (2000). URL:http://
www.mi.informatik.uni-frankfurt.de/research/papers.html. Cita-
tions in this document: §2

76. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in
applying proof methodologies to signature schemes, in Crypto
2002 [81] (2002), 93–110. Citations in this document: §2

77. Tavares, S., Meijer, H. (editors): Selected areas in cryptography, 5th
annual international workshop, SAC98, Kingston, Ontario, Can-
ada, August 17–18, 1998, proceedings, Lecture Notes in Computer
Science, 1556, Springer, 1999. ISBN 3-540-65894-7. See [56]

78. Vaudenay, S. (editor): Progress in cryptology—AFRICACRYPT
2008, First international conference on cryptology in Africa, Casa-
blanca, Morocco, June 11–14, 2008, proceedings, Lecture Notes in
Computer Science, 5023, Springer, 2008. ISBN 978-3-540-68159-
5. See [13]

79. Wegener, I.: Bottom-up-heapsort, a new variant of heapsort, beat-
ing, on average, quicksort (if n is not very small), Theoretical Com-
puter Science 118 (1993), 81–98. Citations in this document: §5

80. Wigley, J.: Removing need for rng in signatures, message
5gov5dpad@wapping.ecs.soton.ac.uk posted to sci.crypt
(1997). URL:http://groups.google.com/group/sci.crypt/msg/
a6da45bcc8939a89. Citations in this document: §2

81. Yung, M. (editor): Advances in cryptology—CRYPTO 2002, 22nd
annual international cryptology conference, Santa Barbara, Cali-
fornia, USA, August 18–22, 2002, proceedings, Lecture Notes in
Computer Science, 2442, Springer, 2002. ISBN 3-540-44050-X.
See [76]

82. Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (editors): Public key
cryptography—9th international conference on theory and prac-
tice in public-key cryptography, New York, NY, USA, April 24–
26, 2006, proceedings, Lecture Notes in Computer Science, 3958,
Springer, 2006. ISBN 978-3-540-33851-2. See [12]

123

ftp://ftp.di.ens.fr/pub/users/pointche/Papers/2000_joc.pdf
ftp://ftp.di.ens.fr/pub/users/pointche/Papers/2000_joc.pdf
http://www.douglas.stebila.ca/files/research/papers/RSBG11.pdf
http://www.douglas.stebila.ca/files/research/papers/RSBG11.pdf
http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89
http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89

	High-speed high-security signatures
	Abstract
	1 Introduction
	2 The signature system
	3 Fast arithmetic modulo 2255-19
	4 Signing messages
	5 Verifying signatures
	References

