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Abstract

Bitcoin[1] currently utilizes the Elliptic Curve Digital Signature
Algorithm (ECDSA)[8] as a zero-knowledge proof of ownership[10]
in order to authorize the transfer of Satoshis[14] from one output to
another. ECDSA applied to cryptocurrency has its share of short
comings, namely: signature malleability can invalidate unconfirmed
transaction chains[16, 13], techniques for batch verification have been
shown to be insecure[6], and support for threshold signatures require
Secure Multi-Party Computation[7].

For this project, I will explore the possibility of integrating Schnorr
Signatures[11] into Bitcoin in the form of a new OP_*CHECKSIG oper-
ator as an alternative to ECDSA. Until recently (2008), Schnorr Sig-
natures were encumbered by US Patent 4,995,082[11]. The primary
advantages of Schnorr Signatures over Elliptic Curves, as defined in
[9, 4], include the support of efficient batch signature verification[6],
immunity to malleability[9], resistance to hash-function collisions, and
support for efficient usable threshold signatures due to the simplicity
of the signature[15, 2].

Additionally, I will contribute contribute an implementation of
batch signature verification with fraud detection as described in [6]
to an open source library[5] that implements ed25519[9] in Go[3].
Furthermore, I will run a series of benchmarks aiming to demon-
strate the potential speed optimizations that block and transaction
verification[12] can gain by moving to Schnorr. Finally, in order
to demonstrate the flexibility of Schnorr with respect to threshold
transactions, I will implement a scheme supporting arbitrary N-of-M
threshold signatures with log2

�
N
M

�
space efficiency[2].
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Deliverables include: a written report, presentation, and demo
code.
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