
OP_SCHNORRCHECKSIG:

Exploring Schnorr Signatures as an
Alternative to ECDSA for Bitcoin

Olaoluwa Osuntokun
osuntokun@.cs.ucsb.edu

April 2015

Abstract

Bitcoin[1] currently utilizes the Elliptic Curve Digital Signature
Algorithm (ECDSA)[8] as a zero-knowledge proof of ownership[10]
in order to authorize the transfer of Satoshis[14] from one output to
another. ECDSA applied to cryptocurrency has its share of short
comings, namely: signature malleability can invalidate unconfirmed
transaction chains[16, 13], techniques for batch verification have been
shown to be insecure[6], and support for threshold signatures require
Secure Multi-Party Computation[7].

For this project, I will explore the possibility of integrating Schnorr
Signatures[11] into Bitcoin in the form of a new OP_*CHECKSIG oper-
ator as an alternative to ECDSA. Until recently (2008), Schnorr Sig-
natures were encumbered by US Patent 4,995,082[11]. The primary
advantages of Schnorr Signatures over Elliptic Curves, as defined in
[9, 4], include the support of efficient batch signature verification[6],
immunity to malleability[9], resistance to hash-function collisions, and
support for efficient usable threshold signatures due to the simplicity
of the signature[15, 2].

Additionally, I will contribute contribute an implementation of
batch signature verification with fraud detection as described in [6]
to an open source library[5] that implements ed25519[9] in Go[3].
Furthermore, I will run a series of benchmarks aiming to demon-
strate the potential speed optimizations that block and transaction
verification[12] can gain by moving to Schnorr. Finally, in order
to demonstrate the flexibility of Schnorr with respect to threshold
transactions, I will implement a scheme supporting arbitrary N-of-M
threshold signatures with log2

�
N
M

�
space efficiency[2].

1



Deliverables include: a written report, presentation, and demo
code.

References

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf 2009.

[2] Gregory Maxwell, SF Bitcoin-Dev Meetup: Requirements for fu-
ture multi-signature , https://people.xiph.org/~greg/gmaxwell_

sfbitcoin_2015_04_20.pdf, April 20th 2015,

[3] Daniel J. Bernstein, The Go Programming Language, https://golang.
org/

[4] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records,
http://cr.yp.to/ecdh/curve25519-20060209.pdf

[5] Adam Langley, ed25519 for Go, https://github.com/agl/ed25519

[6] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, Jan-Jaap Ooster-
wijk Faster batch forgery identification, http://cr.yp.to/badbatch/
badbatch-20120919.pdf

[7] Steven Goldfeder, Joseph Bonneau, Edward W. Felten, Joshua
A. Kroll, Arvind Narayanan Securing Bitcoin wallets via thresh-
old signatures, http://www.cs.princeton.edu/~stevenag/bitcoin_

threshold_signatures.pdf

[8] Bitcoin WIki: Elliptic Curve Digital Signature Algorithm, https://en.
bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm

[9] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin
Yang, High-speed high-security signatures, http://ed25519.cr.yp.to/
ed25519-20110926.pdf,

[10] Bitcoin WIki: OP_CHECKSIG, https://en.bitcoin.it/wiki/OP_

CHECKSIG,

[11] Schnorr C.P, Method for identifying subscribers and for generating and
verifying electronic signatures in a data exchange system, US Patent
4,995,082, http://www.google.com/patents/US4995082, 1991

2



[12] Bitcoin WIki: Transaction, https://en.bitcoin.it/wiki/

Transaction#Verification

[13] Pieter Wuille, Dealing with malleability https://github.com/

bitcoin/bips/blob/master/bip-0062.mediawikit

[14] Bitcoin WIki: Transaction, https://en.bitcoin.it/wiki/

Transaction#Output

[15] Stinson, Douglas R and Strobl, Reto, Provably secure distributed
Schnorr signatures and a (t, n) threshold scheme for implicit certifi-
cates, Information Security and Privacy, pgs 417-434, 2001,

[16] Bitcoin WIki: Transaction Malleability, https://en.bitcoin.it/

wiki/Transaction_Malleability

3


