
Distributed Provers and
Verfiable Secret Sharing
Based on the Discrete
Logarithm Problem

Torben Pryds Petersen

March 1992

Abstract (in Danish)

I et asymmetrisk (“public-key”) krypto-system bar en person (A) en hem-
melig nøgle, hvis tilhørende offentlige nøgle er tilgængelig for enhver. Siden
s̊adanne systemer blev foresl̊aet i 1976 (se [DH76]), har studiet af metoder,
hvormed A kan overbevise andre om, at han virkelig kender denne hemmelige
nøgle, spillet en stor rolle indenfor kryptografi.

I adskillige år kunne de fleste eksisterende s̊adanne autenticitets-systemer
placeres i en af nedennævnte to klasser:

• Identifikations-systemer: modtageren bliver overbevist om A’s iden-
titet, men kan ikke nødvendigvis bevise overfor andre, at han har talt
med A.

• Digitale signaturer: modtageren f̊ar en signatur fra A. Denne kan
verificeres af enhver, som kender A’s offentlige nøgle.

I 1988 blev der imidlertid foresl̊aet et nyt paradigme for autenticitetsprotokoller
— de s̊akaldte uafviselige signaturer (engelsk: “undeniable signatures”, se
[CA90]). Disse signaturer udgør en mellemting mellem identifikations-systemer
og digitale signaturer, idet A giver modtageren en signatur, som kun kan ver-
ificeres med A’s hjælp. Specielt kan modtageren ikke vise den til andre uden
A’s viden. P̊a den anden side kan A ikke uden videre løbe fra signaturen, idet
A for at benægte en signatur skal bevise, at den er falsk, hvilket er umuligt,
hvis A tidligere har bevist overfor modtageren, at den er korrekt.

Der vil i dette arbejde blive præenteret en anden metode til konstruk-
tion af uafviselige signaturer, som yderligere har den fordel, at A p̊a ethvert
tidspunkt kan vælge at ændre enten en enkelt eller samtlige signaturer til
sædvanlige digitale signaturer. Der gives desuden en præcis definition af
disse konvertible signaturer, og p̊a basis af denne definition vises det, at de

ii

eksisterer, hvis og kun hvis digitale signaturer eksisterer. Dette er en lille
smule overraskende, idet konvertible uafviselige signaturer giver A flere mu-
ligheder end digitale signaturer.

I forbindelse med alle tre klasser af autenticitets-protokoller nævnt oven-
for er det interessant at undersøge, hvorledes A kan lade sig repræsentere af
agenter. Sagt mere præcist kunne A p̊a et tidspunkt ønske at autorisere
n ≥ 1 agenter s̊aledes, at mindst k af disse (1 ≤ k ≤ n) må være til stede for
at repræsentere A.

Denne mulighed er specielt interessant for konvertible, uafviselige signa-
turer, idet den tillader A at ansætte agenter, som kan hjælpe med at veri-
ficere signaturer. Det er dog ogs̊a et interessant problem i forbindelse med
identifikations-systemer samt digitale signaturer, idet løsningerne her kan
anvendes for organisationer, hvis hemmelige nøgle er uddelt blandt medlem-
merne. Brug af organisationens nøgle kræver herefter medvirken af et fast
antal medlemmer (for eksempel mindst halvdelen).

Der kendes metoder til at dele en hemmelighed blandt n personer,
s̊aledes at mindst k af disse må være til stede for at genfinde hemmeligheden,
hvorimod færre end k personer ikke kan finde noget information om nøglen.
For at beskytte sig mod snyderi vil en agent, som modtager en del af hemme-
ligheden, dog ofte være interesseret i selv at forsikre sig om, at vedkommende
har modtaget en korrekt del af hemmeligheden.

Denne afhandling beskriver to metoder til dette. Den første metode har
den fordel, at færre end k personer ikke f̊ar noget (Shannon) information om
hemmeligheden. Dette er særdeles nyttigt i forbindelse med hemmeligheder,
som kræver en høj grad af sikkerhed. Den anden metode er konstrueret
med henblik p̊a asymmetriske krypto-systemer, idet den angiver, hvorledes
en hemmelig nøgle med tilhørende offentlig nøgle kan uddeles blandt nogle
agenter. I denne metode benyttes den offentlige nøgle ved verifikationen af
de enkelte dele af den uddelte hemmelighed.

Hvis brug af en s̊aledes uddelt nøgle kræver, at agenterne først finder
den, og derefter bruger den p̊a samme måde, som A ville have gjort, kan
nøglen i princippet kun anvendes en gang, thi i s̊a fald behøver disse agenter
ikke at mødes fremover for at anvende nøglen.

Der præsenteres derfor protokoller, som tillader agenterne at repræsen-
tere A uden, at nogen af dem herved bliver i stand til at forbedre sin mulighed
for at bruge den hemmelige nøgle uden hjælp af mindst k− 1 andre agenter.

iii

Der er givet protokoller, som gør det muligt for k agenter at

• identificere sig som A (det vi1 sige, at de viser, at de tilsammen kan
beregne A’s hemmelige nøgle);

• konstruere digitale signaturer p̊a A’s vegne;

• bevise gyldighed af A’s uafviselige signaturer. A kan enten autorisere
agenterne til at bevise gyldighed af enkelte signaturer eller samtlige A’s
uafviselige signaturer.

Det er ogs̊a muligt at lave systemer, som tillader agenter at konstruere
uafviselige signaturer p̊a A’s vegne, men disse behandles ikke her. Alle disse
protokoller er baseret p̊a den metode til uddeling af en hemmelighed, som
udnytter, at en tilhørende offentlig nøgle er kendt.

For at være i stand til at vurdere sikkerheden af agenternes protokoller,
er der givet en generel beskrivelse af den situation, hvor et antal agenter deler
en nøgle og ønsker at bruge den i en protokol med en anden part. En s̊adan
protokol kaldes et distribueret bevis (engelsk: “distributed proof”). Med
udgangspunkt i sædvanlige definitioner af sikkerhed af kryptogranske pro-
tokoller defineres sikkerheden af en s̊adan protokol, og det vises, at de oven-
nævnte anvendelser er sikre. Yderligere præsenteres en generel konstruktion
af distribuerede beviser, som kan bruges til at lave et sikkert distribueret
bevis for medlemskab af sprog i NP.

I det ovennævnte er asymmetriske krypto-systemer udelukkende anvendt
i forbindelse med autenticitets-protokoller. Disse systemer kan imidlertid
ogs̊a anvendes til hemmeligholdelse af en meddelelse, idet meddelelsen kan
enchifreres med den offentlige nøgle, hvorefter kun personer med kendskab til
den hemmelige nøgle kan læse meddelelsen. I afhandlingen vises, hvorledes
agenter, som deler den hemmelige nøgle, kan dechifrere en givet chiffer-tekst.
Denne anvendelse er specielt interessant for organisationer, hvor den hem-
melige nøgle er uddelt blandt medlemmerne.

Contents

1 Introduction 1

2 Notation and Assumption 4

3 Verifiable Secret Sharing 8

3.1 Secret Sharing Schemes . 8

3.2 Verifying the Shares . 10

3.3 Related Work . 12

3.4 An Information-Theoretic Secure Scheme 14

3.5 Efficiency and Security . 20

3.6 Computing on Shared Secrets 22

4 Secret Sharing in a Public-Key Scenario 27

4.1 Verification using the Public Key 28

4.2 Linear Combinations . 32

4.3 Selecting and Distributing a Secret Key 32

4.4 Generalizations . 35

5 Threshold Crypto Systems 36

5.1 The El Gamal Public-Key Crypto System 38

5.2 The Threshold System . 38

5.3 Security of the Scheme . 39

6 Distributed Proofs 44

6.1 Definition of Distributed Proofs 45

CONTENTS v

6.2 A Theoretical Solution . 51

6.3 Applications to Identification Schemes 54

7 Undeniable Signatures 59

7.1 An Undeniable Signature Scheme 59

7.2 Hidden Verifiers . 66

7.3 Non-Interactive Undeniable Signatures
with Preprocessing . 68

8 Convertible Undeniable Signatures 70

8.1 Theoretical Results . 71

8.2 A Practical Solution . 80

9 Agents in Undeniable Signature Schemes 87

9.1 Distributed Verification . 88

9.2 Generalizations . 93

9.3 Distributed Denial . 94

10 Conclusion 100

List Of Protocols 102

References 104

Chapter 1

Introduction

This thesis was written as part of my Ph.D. study at Aarhus University with
Peter Landrock as supervisor. The main object is to study how a number of
persons can replace a single person in cryptographic protocols. Some of the
results presented here were developed in joint work with Joan Boyar, David
Chaum and Ivan Damg̊ard.

Consider a typical cryptographic scenario in which a person, A, has
a pair of secret/public keys. This pair allows A to participate in various
protocols in which she utilizes the fact that only she knows the secret key (e.g.
identification protocols). In general it is necessary to know A’s secret key in
order to replace her in these protocols. This property is essential in some
applications, but it also raises the question, what A should do, if she wants
a protocol to be executed (correctly), but is prevented from participating? If
A gives her secret key to an agent (e.g. her lawyer), this agent can represent
A in all future protocols — even against A’s will.

A better strategy for A would therefore be to authorize many agents
and require that a certain number of these be present in order to represent
A. Then many agents have to cooperate in order to cheat A. This solution
is often used in cryptology, and several systems have been developed, which
allow A to distribute a secret key among the agents, such that only certain
subsets of these can later recover the key. However, the existing literature
has not shown, how the agents should actually represent A in practice. In
particular, it is desirable that the agents can do this without ever having
to find A’s secret. This work provides a general (theoretic) solution to this
problem, and more efficient protocols are given for various situations.

2

All protocols in this work are based on the arithmetic in the field GF (p),
where p is a prime. Chapter 2 describes the notation which will be used,
but it is assumed that the reader is familiar with the basic properties of this
field. In order to avoid too many technical definitions, it is also assumed that
the reader is familiar with the basic cryptographic notions and in particular
the definitions of indistinguishable random variables, simulators and zero-
knowledge (as given in [GMR89]).

The first and perhaps the most important problem that A faces when she
wants to authorize a number of agents is to distribute her secret key among
them. The first part of this work deals with this problem and Chapter 3 and
4 show how this can be done in different situations.

In Chapter 5 we consider the situation, where A uses her secret key to
decipher ciphertexts. This problem has received some attention previously,
and the main result of this chapter is the development of a scheme that
allows the members of an organization to select a pair of secret/public keys
to a crypto system such that only certain sets of members can later decipher
messages that are encrypted under the organization’s public key.

Chapter 6 introduces the general framework of distributed proofs, and
as an application of this notion it is shown how A can be represented by
agents in an identification and a digital signature scheme.

One of the primary objects of this work is the application of distributed
proofs to (selectively) convertible undeniable signatures. David Chaum has
recently suggested the notion of undeniable signatures, which are signatures
that cannot be verified without the help of the signer. These signatures
are briefly described in Chapter 7, and in Chapter 8 they are extended to
(selectively) convertible signatures which are undeniable signatures with the
added property that the ability to verify signatures is separated from the
ability to construct new signatures. They are particularly suited for the
framework considered here, as they allow the signer to authorize agents,
which can verify his undeniable signatures without being able to construct
new signatures. Chapter 9 describes how this can be done, and Chapter 10
concludes this work.

I wish to thank David Chaum for suggesting to use agents to verify
undeniable signatures, and Joan Boyar for many discussions during my study.
I also want to thank the external referee, Claude Crépeau, for reading this
thesis very carefully and giving many suggestions for improvements. Special
thanks to my supervisor, Peter Landrock, and to Ivan Damg̊ard who has

3

been a great help to me.

Chapter 2

Notation and Assumption

This chapter presents some notation which is used repeatedly in this work,
and a few assumptions about problems related to that of computing discrete
logarithms are formalized.

Notation

Whenever we say that an element is chosen at random in some set, A, we
mean with respect to the uniform distribution and independently of every-
thing else (unless otherwise stated). If A is finite, an element in A will
therefore be selected with probability 1

#A
, where #A in general denotes the

cardinality of the (finite) set A.

For any string of bits x ∈ {0, 1}∗ let |x| be the length of x, and for any
natural number n ∈ IN let |n| be the length of the binary representation of
n.

Throughout this work p denotes a large prime. If all prime factors of
p − 1 are small, the discrete logarithm modulo p can be computed in time
O(|p|2) (see [PH78]). We will therefore always require that p− 1 has a large
prime factor, and this factor will be denoted by q.

For such a pair of primes (p, q) the unique subgroup of ZZ∗
p of order q

will be called Gq, and g will always be a generator of Gq. In the protocols
that will be described later, it will sometimes be necessary to verify that an
element a ∈ ZZ∗

p belongs to Gq. This is very easy to do as

∀a ∈ ZZ∗
p : a ∈ Gq ⇔ aq = 1

5

For a, b ∈ ZZ∗
p the least non-negative integer, e, such that b = ae mod p is

denoted loga b. If such an integer does not exist, loga b is undefined, but
due to the fact that any element a �= 1 in Gq generates Gq, loga b is always
defined for such an a and b ∈ Gq.

The Euler totient function is denoted ϕ. Thus ϕ(n) is the number of
integers between 0 and n relatively prime to n for any n ∈ IN .

A function f : IN → IR+ ∪ {0} is called negligible, if for all c > 0:

f(n) < n−c

for all n sufficiently large. An event, which occurs with probability 1− f(n)
where f is negligible, is said to have overwhelming probability.

Assumptions

As mentioned above it will be assumed that it is hard to compute discrete
logarithms modulo p. This assumption has been widely used in cryptography
during the last 15 years (see for example [DH76], [BM84], [EG85], [Bet88],
[Sch90] and [BM91]).

In the following we shall modify the usual assumption about the in-
tractability of computing discrete logarithms a little, as we shall assume that
this problem is hard when p−1 has a single large prime factor (as mentioned
above p − 1 must have at least one large prime factor). However, this does
not seem to be a stronger assumption than the usual assumption, as it is
generally believed that such primes are among the hardest for computing
discrete logarithms. Before stating the formal intractability assumptions we
note that

ZZ∗
p
∼= Gp × C p−1

q

where C p−1
q

is a cyclic group of order p−1
q

. If q is much larger than p−1
q

, the

problem of computing discrete logarithms in ZZ∗
p can be reduced to that of

computing discrete logarithms in Gq. Therefore we will state our assumption
about the intractability of computing discrete logarithms in ZZ∗

p for the group
Gq.

Consider a family of probabilistic polynomial size circuits (Cn)n∈IN aim-
ing at computing logg h for h ∈ Gq. Cn takes 4n bits as input where n = |p|

6

plus a number of random bits. Let PC(p, q, g) be the probability that

Cn(p, q, g, h) = logg h

when h ∈ Gq is chosen at random. This probability is over the random bits
of the circuit and the choice of h. Then it will be assumed that PC(p, q, g) is
negligible as a function of |q|:

Assumption DLP

For all families (Cn)n∈IN as above, for all c > 0, for all sufficiently large primes
p and q and all generators, g:

PC(p, q, g) < |q|−c

The Diffie-Hellman problem (DH) is that of computing gxy when gx and gy

are given. For primes, p, such that ϕ(ϕ(p)) has only small prime factors,
this problem is equivalent to DLP (see [dB90]). However, in general it is
not known whether it is possible to solve DH without being able to compute
discrete logarithms.

Let (Cn)n∈IN be a family of probabilistic polynomial size circuits such
that Cn has 5n input bits (plus the random bits) and n output bits and let

PC(p, q, g) = Prob[Cn(p, q, g, gx, gy) = gxy].

The probability is over the random choices of x, y ∈ ZZ∗
p and the random bits

of the circuit.

Assumption DH

For all families (Cn)n∈IN as above, for all c > 0, for all sufficiently large primes
p and q and all generators, g:

PC(p, q, g) < |q|−c

Another problem related to that of computing discrete logarithms is to rec-
ognize whether to pairs of elements (g, h) ∈ G2

q and (a, b) ∈ G2
q satisfies

logg h = loga b.

7

This problem is known as the simultaneous discrete logarithm problem (see
[CEG87]), and it is easy to solve if one can compute discrete logarithms.
However it is not known if the converse also holds.

Let (Cn)n∈IN be a family of probabilistic polynomial time circuits such
that Cn has 6n input bits (plus the random bits) and one output bit.

Assumption SDL

For all families (Cn)n∈IN as above, for all c, d > 0, for all sufficiently large
primes p and q (n = |p|) for all generators g and for at least a fraction 1−|q|−d

of a ∈ Gq (a �= 1):

|Prob[Cn(p, q, g, h, a, b) = 1 | loga b = logg h]−
Prob[Cn(p, q, g, h, a, b) = 1 | loga b �= logg h] | |q|−c.

The probabilities are over the random choices of h, b ∈ Gq and the random
bits of Cn.

This assumption says that an algorithm for solving the simultaneous
discrete logarithm problem cannot do much better than trying to guess
logg h, logg a, loga b or logh b.

In the preceding assumptions we have suggested that the problem in
question is hard for all pairs of sufficiently large primes. It is however suffi-
cient that the problems are hard for all but a negligible fraction of the large
primes, since the probability of generating a “bad” pair can be neglected in
that case.

As for the generation of p and q it is sufficient in practice to use a
probabilistic test of primality ([Rab80], [SS77] and [BDL91]). Furthermore,
if one first generates q and determines p as the lest prime equivalent to 1
modulo q, then heuristics show that (see [Wag79])

p < q log2 q.

Thus |p| ≤ |q|+ 2 log|q|, which is sufficient for the above assumptions.

Chapter 3

Verifiable Secret Sharing

The object of this chapter is to present a non-interactive verifiable secret
sharing scheme in which no information about the secret is revealed to unau-
thorized groups. First, a formal definition of verifiable secret sharing is pre-
sented, and the history of such schemes is sketched. After a presentation of
the scheme a few applications are described.

The results in this chapter are also described in [Ped91b]

3.1 Secret Sharing Schemes

Let S be a finite set of secrets, and let Γ be a set of subsets of {1, 2, . . . , n}.
A secret sharing scheme for the access structure, Γ, describes how a dealer,
D, having a secret, s ∈ S, can send information (called shares) to n par-
ticipants (shareholders), P1, . . . , Pn such that the following holds for all
A ⊆ {1, . . . , n}:

• If A /∈ Γ then (Pi)i∈A get no information about s.

• If A ∈ Γ then the participants in A can compute s in polynomial time
(in a security parameter).

Usually the first requirement refers to Shannon information (see [Sha48]), but
it can also be relaxed to mean that the participants cannot compute (any
bit of) s. Obviously, this definition only makes sense, if Γ is monotonely

3.1 Secret Sharing Schemes 9

increasing:

∀A, B ⊆ {1, . . . , n} : A ∈ Γ ∧ A ⊆ B ⇒ B ∈ Γ.

Here, we shall only be concerned with (k, n)-threshold schemes. For 1 ≤ k ≤
n, such a scheme is defined by the access structure:

Γk = {A ⊆ {1, . . . , n} | #A ≥ k}.
The first published descriptions of secret sharing schemes were both threshold
schemes (see [Sha79] and [Bla79]). These secret sharing schemes are in some
sense equivalent (see [Kot85]), but in this work we shall only use Shamir’s
scheme which is briefly described now.

Consider a finite field, IF , such that each s ∈ S can be uniquely rep-
resented as an element in IF . Hence, each secret can be identified with an
element in IF . In order to distribute s ∈ IF among P1 . . . Pn (where n < |IF |)
the dealer chooses a polynomial f ∈ IF [x] of degree at most k − 1 satisfy-
ing f(0) = s. Participant Pi receives si = f(pi) as his private share, where
pi ∈ IF \ {0} is public information about Pi (pi �= pj for i �= j).

Let 0 ≤ l < k and consider l shares si1 , si2 , . . . , sil . These shares contain
no information about the secret, because for every s ∈ IF there are exactly
|IF |k−l−1 polynomials of degree at most k − 1, which maps 0 to s and pij to
sij for j = 1, 2, . . . , l.

Furthermore, any k persons (Pi1 , . . . , Pik) can recover the secret by first
finding f using the formula:

f(x) =
k∑

j=1

(
∏
h �=j

x− pih

pij − pih

)f(pij)

=
k∑

j=1

(
∏
h �=J

x− pih

pij − pih

)sij

Hence

s =
k∑

j=1

ajsij ,

where a1, . . . , ak are given by

aj =
∏
h �=j

pih

Pih − Pij

.

3.2 Verifying the Shares 10

Thus each aj is non-zero and can easily be computed from the public infor-
mation.

3.2 Verifying the Shares

Two types of cheating can occur in a secret sharing scheme. Either the dealer
can send incorrect shares to some of the participants (i.e. a share different
from that prescribed by the dealers distribution algorithm), or a participant
can supply an incorrect share, when a group of participants are trying to
recover the secret (see [BS88] for a further discussion of this).

When designing a secret sharing scheme one should be aware that both
of these frauds can occur, because it cannot be assumed in general that
the n participants and the dealer trust each other completely. Hence, one
should use a verifiable secret sharing scheme (see [CGMA85]). This is a
secret sharing scheme in which the participants are allowed to talk with
each other and the dealer in order to verify the correctness of their shares.
Furthermore, each participant must be able to prove that his share is correct
when a number of participants are going to recover the secret.

A general communication model for verifiable secret sharing allows the
dealer and each shareholder to

• send secret messages to each other participant; and

• broadcast messages to the other participants.

In this work we are interested in non-interactive verifiable secret sharing.
In such a scheme the dealer is allowed to send a secret message to each
participant and to broadcast messages, but the shareholders cannot talk to
each other or the dealer when verifying a share. Each shareholder is only
allowed to broadcast a single message (bit). Namely, whether the share is
accepted or not.

In order to define verifiable secret sharing formally we first note that the
definition of secret sharing schemes requires the existence of two polynomial
time computable functions, distribute and combine, where Pi gets the share
si of s, if

distribute(r, s, p1, p2, . . . , pn) = (s1, s2, . . . , sn).

3.2 Verifying the Shares 11

Here r ∈ {0, 1}∗ is a string of random bits. For all i1, . . . , ik ∈ {1, . . . , n}
where ij �= il for j �= l the following must hold:

combine[(pi1 , si1), . . . , (pik , sik)] = s.

Furthermore, it must be infeasible to compute s from fewer than k shares.
In particular, the scheme is said to be unconditionally secure for the dealer,
if fewer than k shares contain no Shannon information about s.

In a non-interactive verifiable secret sharing scheme, let proof be the
message that D broadcasts to all participants. Thus in such a scheme

distribute(r, s, p1, p2, . . . , pn) = (s1, s2, . . . , sn, proof).

Let furthermore verify(pi, si, proof) be a polynomial time computable pred-
icate which Pi uses to decide whether his share should be accepted or not.
Then the following must hold:

Definition 3.1
Let K be a positive integer.
Three polynomial time (in K) computable functions distribute, combine and
verify constitute a non-interactive verifiable (k, n)-threshold scheme with se-
curity parameter K, if

1. For all secrets s ∈ S, and for all r ∈ {0, 1}∗. If

distribute(r, s, p1, p2, . . . , pn) = (s1, s2, . . . , sn, proof)

then for all i1, i2, . . . , ik ∈ {1, 2, . . . , n} (ij �= il for j �= l)

combine[(pi1 , si1), . . . , (pik , sik)] = s

and for all i ∈ {1, 2, . . . , n}:
verify(pi, si, proof) = 1.

If verify(pi, si, proof) = 1 then Pi accepts the share si and otherwise
the share is rejected.

2. For all secrets s ∈ S and all r ∈ {0, 1}∗, if

distribute(r, s, p1, p2, . . . , pn) = (s1, s2, . . . , sn, proof)

then it is not feasible to find s from fewer than k of the si’s and proof

3.3 Related Work 12

3. For any polynomial time (in K) algorithm, A.

If A on input r ∈ {0, 1}∗ outputs n shares, s1, s2, . . . , sn and a message
proof , then the following holds.

For all subsets S1 and S2 of {1, . . . , n} of size k such that

∀i ∈ S1 ∪ S2 : verify(pi, si, poof) = 1

the following holds except with negligible (in K) probability:

combine[(pi, si)i∈S1 = combine[(pi, si)i∈S2].

The probability is over the random choices of r.

A share is called correct, if it is accepted by verify .

Definition 3.1 does not refer to the secret when defining the correctness
of a share. This is in accordance with the fact that a single participant
has no information about s during the verification, and s could therefore be
whatever the dealer claims. After the execution of the verification protocol
the secret is defined as the value, which any k participants with correct shares
will find when combining their shares. If the dealer succeeds in distributing
inconsistent shares, this is not well-defined, but Definition 3.1 guarantees
that the dealer will be caught almost always, if he tries to cheat.

This definition of verifiable secret sharing schemes allows that an in-
finitely powerful dealer distributes incorrect shares. We shall later return to
this point.

3.3 Related Work

As previously mentioned the first two secret sharing schemes were published
in 1979 ([Sha79] and [Bla79]), and since then much work has been put in to
the investigation of such schemes (see [Sim90] for a list of references).

As for verifiable secret sharing, the first method that prevents cheating
in a secret sharing scheme was described in [MS81]. Here an error-correcting
code is applied so that the secret can be recovered even if some of the shares
are incorrect (but the scheme does not allow a shareholder to obtain a proof
that his share is correct). This is also true for Tompa and Woll’s modification
of the Shamir scheme presented in [TW86]. Here the set of legal secrets is a

3.3 Related Work 13

small subset of the fields IF , so that it is very unlikely that incorrect shares
will produce a legal secret when combined.

There has been other suggestions for verifying that the participants ob-
tain the correct secret when combining their shares, but the first method
that allowed the participants to verify their shares before trying to recover
the secret was presented in [CGMA85]. Unfortunately, this scheme requires
exponential in k long messages.

Here we shall not mention all the interactive verifiable secret sharing
schemes that have been constructed, but only remark that such schemes
have been a very important tool in the construction of unconditionally secure
protocols for multi-party computations (see [CCD88] and [BGW88]). Both
of these schemes require that less than n

3
of the shareholders are dishonest,

and they do not need the broadcast channel, because it can be simulated
using a polynomial time protocol for Byzantine Agreement (see [LSP82] and
[DS82]). In the scheme of [CCD88] the dealer has an exponentially small
probability of cheating, whereas [BGW88] achieves zero error probability.
The basic ideas of [BGW88] are reused by Micali and Rabin in [MR91] to
obtain a scheme with the same properties, and which only needs an expected
number of rounds.

It can be argued (see [CCD88]), that even if a broadcast channel is given,
it is impossible to achieve an unconditionally secure scheme with zero error
probability, if more than one third of the participants are dishonest. However,
if the dealer is allowed an exponentially small probability of distributing
inconsistent shares it is possible to construct a scheme, which allows up to n

2

dishonest participants (see [RB89]).

To the knowledge of this author, the first non-interactive verifiable secret
sharing scheme was presented in [Fel87]. Here the dealer publishes proba-
bilistic encryptions of the polynomial used to compute the shares, and due
to a homomorphism property of the encryption scheme the shares can be
verified. The scheme works for any probabilistic encryption scheme in which
a number of bits (say l) are encrypted as the “hard-core” bits of a one-way
function with homomorphic properties. As an example it is suggested to use
the one-way function

f : x �→ αx mod p

where α generates ZZ∗
p . This function has the property that

f(x + y) = f(x)f(y).

3.4 An Information-Theoretic Secure Scheme 14

For l = O(log|p|) there is a function

pred : {1, . . . , p− 1} → {0, 1}l

such that pred(x) is hard to compute given f(x). Thus an l-bits message,
m, is encrypted as f(x) where pred(x) = m. In Section 4.1 we present a
scheme which is very similar to that of Feldman when this one-way function
is used. The reader is referred to this section and [Fel87] for more details,
but we remark here that due to the encryption scheme, this scheme has the
following properties

• Even an all powerful dealer cannot distribute inconsistent shares; and

• After a secret has been distributed its security depends on a compu-
tational assumption.

3.4 An Information-Theoretic Secure Scheme

Most literature dealing with secret sharing schemes requires that unautho-
rized groups of shareholders get no Shannopn information about the secret.
This has the advantage that the security of the secret is independent of future
developments in algorithms and hardware. It is therefore also important to
be able to distribute a secret verifiably in a (k, n)-threshold scheme in such
a way, that fewer than k shares contain no information about the secret.

This section presents such an information theoretic secure secret shar-
ing scheme. The idea is to replace the encryption scheme in [Fel87] by a
commitment scheme which is unconditionally secure for the committer. By
a proper choice of the commitment scheme this also allows a more efficient
scheme and it ensures that the Shamir scheme is used in a field. This is
important as the correctness of the Shamir scheme depends on the fact that
the polynomial is chosen over a field.

The Commitment Scheme

Let g and h be elements of Gq such that logg h is unknown to all parties.
These elements can either be chosen by a trusted center, when the system is
initialized, or by (some of) the participants using a coin-flipping protocol.

3.4 An Information-Theoretic Secure Scheme 15

The committer commits himself to an s ∈ ZZq by choosing t ∈ ZZq at
random and computing

BC(s, t) = gsht

(this is a slight variation of a scheme suggested in [BCP]). Such a commit-
ment can later be opened by revealing s and t. The following theorem is very
easy to prove and shows that BC(s, t) reveals no information about s, and
that the committer cannot open a commitment to s as s′ �= s unless he can
find logg (h).

Theorem 3.2
BC(s, t) is uniformly distributed in Gq for any s ∈ ZZq and for randomly
uniformly chosen t ∈ ZZq.
If s, s′ ∈ ZZq satisfies s �= s′ and BC(s, t) = BC(s′, t′) for some t, t′ ∈ ZZq,
then t �= t′mod q and

logg h =
s− s′

t′ − t
mod q.

Even though it will not be used in the following we mention that it is
quite easy to prove one’s ability to open two commitments as the same value
without revealing this value. Let namely

β = BC(s, t) and β′ = BC(s, t′)

where t �= t′. Anyone who knows an r such that β/β′ = hr can open β as s
if and only if he can also open β′ as s. By revealing r = t− t′ it is therefore
possible to prove equality of the contents of two commitments. Furthermore,
t− t′ does not contain any information about s.

It is not that easy to prove, that commitments to two different values
really do contain different values. In particular, the proof of [BCC88] that
two blobs contain different bits given a method of proving equality does not
generalize to this commitment scheme. In [CHP91] a protocol for proving
inequality of the content of two commitments is described.

Finally consider the efficiency of the commitment scheme. As mentioned
in Chapter 2, p and q can presumably be constructed such that p ≤ q(log q)2.
Thus a commitment to |q| bits requires at most |q|+ 2 log |q| bits. Further-
more, by first computing the product gh a commitment to s can be computed

3.4 An Information-Theoretic Secure Scheme 16

in less than 2|q| multiplications modulo p or less than two multiplications pr.
bit of s. Thus the commitment scheme is quite efficient with respect to the
size of commitments as well as the amount of computation required.

The Scheme

For convenience we assume that i is the public information of Pi (i.e. pi = i
for 1 ≤ i ≤ n). By the fact that ZZq is a field, the dealer, D, can distribute
s ∈ ZZq as follows:

1. D chooses F ∈ ZZq[x] of degree at most k − 1 satisfying F (0) = s, and
computes si = F (i) for i = 1, 2, . . . , n.

Let F (x) = F0 + F1x + . . . + Fk−1x
k−1, where F0 = s. D chooses

G0, G1, . . . , Gk−1 ∈ ZZq at random and uses Gi when committing to Fi

for i = 0, 1, . . . , k − 1. D broadcasts proof = (E0, . . . , Ek−1) where

Ei = BC(Fi, Gi) for i = 0, 1, . . . , k − 1.

2. Let G(x) = G0+G1x+· · ·+Gk−1x
k−1 and let ti = G(i) for i = 1, . . . , n.

Then D sends (si, ti) secretly to Pi for i = 1, 2, . . . , n.

When Pi has received his share, (si, ti), he verifies that proof is of the right
form and that verify(i, (si, ti), proof) = 1 where

verify(i, (si, ti), proof) = 1 ⇐⇒ BC(si, ti) =
k−1∏
j=0

Eij

j .

Lemma 3.3
Let S ⊂ {1, 2, . . . , n} be a set of size k such that verify(i, (si, ti), proof) = 1
for all i ∈ S. Then the k participants (Pi)i∈S can find a pair (s′, t′) such that
E0 = gs′ht′ .

Proof
Let S ⊆ {1, 2, . . . , n} of size k be given, The participants in S first find the
two unique polynomials F ′ and G′ of degree at most k − 1 satisfying

F ′(i) = si

G′(i) = ti

3.4 An Information-Theoretic Secure Scheme 17

for i ∈ S. Now let h = gd. Then

gF ′(i)+dG′(i) = gsi+dti = BC(si, ti)

for i ∈ S. Thus (F ′ + dG′)(x) is the unique polynomial of degree at most
k − 1 mapping i to si + dti. Let Ej = gej . Then the polynomial

e(x) =
k−1∑
j=0

ejx
j

satisfies e(i) = si + dti for i ∈ S. Thus

e(x) = (F ′ + dG′)(x)

and in particular

E0 = ge(0) = gF ′(0)+dG′(0) = gF ′(0)hG′(0).

Therefore it is sufficient to put s′ = F ′(0) and t′ = G′(0). �
The members in S do not have to find F ′ in order to find the secret. It

is more efficient to use the formula

s =
∑
i∈S

aisi where ai =
∏

j∈S,j �=i

j

j − i
.

Note that they can also find G0 by the formula

G0 =
∑
i∈S

aiti

It follows from the above arguments that if the dealer follows the protocol
then

• verify(i, (si, ti), proof) = 1 for all i; and

• s can be computed in polynomial time from any k shares.

This shows that the first requirement in Definition 3.1 is fulfilled. The next
two theorems consider the remaining two requirements.

Theorem 3.4

3.4 An Information-Theoretic Secure Scheme 18

Requirement 3) of Definition 3.1 is satisfied under assumption DLP.

Proof
Consider a dealer, who has constructed n shares (si, ti)i=1,... ,n and a message,
proof . Let S and S ′ be two subsets of {1, 2, . . . , n} such that all participants
in S and S ′ have accepted their shares in the verification. By Lemma 3.3
above the members in S (S ′) can together find a pair (s, t) ((s′, t′)) such that
E0 = BC(s, t) (= BC(s′, t′)).

If s �= s′ the dealer can therefore find logg h by first finding S and S ′

(see below) and then computing logg h as described in Theorem 3.2.

As the shares are consistent if and only if there is a polynomial, f , of
degree at most k − 1 such that

f(i) = si for i = 1, 2, . . . , n

the dealer can find S and S ′ as follows, if the shares are inconsistent:

1. Let S := ∅ and i := 1.

2. While #S < k and i ≤ n do:

(a) if (si, ti) is correct: put S := S ∪ {i}.
(b) put i := i + 1.

3. If i > n: stop (at most k correct shares).

4. Let f be the unique polynomial of degree at most k − 1 such that
f(i) = si for all i ∈ S.

5. Let S ′ ⊂ S such that #S ′ = k − 1.

6. While #S ′ < k and i ≤ n do:

(a) if (si, ti) is correct and f(i) �= si: put S ′ := S ′ ∪ {i}.
(b) put i := i + 1.

7. If #S ′ = k: output S and S ′.
Otherwise output “no inconsistent shares”.

�

3.4 An Information-Theoretic Secure Scheme 19

As a consequence of Theorem 3.4 all the correct shares are consistent
unless the dealer succeeds in finding logg (h) before the last share has been
sent. Furthermore, Theorem 3.2 implies, that a shareholder cannot supply an
incorrect share, when k shareholders are going to recover the secret, unless he
can find logg h. Note however, that the shareholder usually will have much
more time to find logg h, than the dealer has.

The following theorem shows, that fewer than k participants get no
Shannon information about the secret. Hence requirement 2 in Definition
3.1 is satisfied unconditionally. For any subset S ⊆ {1, 2, . . . , n}, let viewS

denote the messages, that the members of S see:

viewS = (E0, E1, . . . , Ek−1, (si, ti)i∈S).

Theorem 3.5
For any S ⊂ {1, 2, . . . , n} of size at most k − 1 and any viewS

Prob[D has secret s | viewS] = Prob[D has secret s]

for all s ∈ ZZq.

Proof
It is sufficient to prove the theorem in the case where S has size k − 1. If
k − 1 parties get no information about s then neither does fewer than k − 1
parties.

Let S = {1, . . . , k − 1} and viewS = (E0, E1, . . . , Ek−1, (si, ti)i=1,...k−1).
For every s ∈ ZZq there is exactly one t ∈ ZZq such that E0 = BC(s, t) and
there is exactly one polynomial F of degree at most k − 1 satisfying

F (0) = s
F (i) = si for i = 1, . . . , k − 1

and exactly one polynomial G of degree at most k − 1 satisfying

G(0) = t
G(i) = ti for i = 1, . . . , k − 1

Let F (x) = s+F1x+ · · ·+Fk−1x
k−1 and G(x) = t+G1x+ · · ·+Gk−1x

k−1. In
order to show that viewS does not contain any information about the secret
it is sufficient to show that F and G satisfies

BC(Fi, Gi) = Ei for i = 1, . . . , k − 1.

3.5 Efficiency and Security 20

Similar to the proof of Lemma 3.3 this follows from the fact that there is one
and only one polynomial, f , of degree at most k−1 satisfying (s0 = s, t0 = t)

gf(i) = gsihti

for i = 0, 1, . . . , k−1 and the polynomial F +dG satisfies this for d = logg h.

�

We state here without proof the following theorem (which can be proved
by the same method as the proof of Theorem 4.3 in Section 4.1).

Theorem 3.6
There is a probabilistic polymomial time machine, M , which on input S ⊂
{1, 2, . . . , n} and (si, ti)i∈S produces viewS with the same distribution as the
dealer does.

This theorem shows that any fixed set of at most k − 1 shareholders
can actually generate the messages received from the dealer with the same
distribution. Theorem 3.6 is weaker than Theorem 3.5, because the latter
says that no matter how the set S ⊆ {1, 2, . . . , n} of k − 1 persons is gen-
erated, the shares (si, ti)i∈S contain no information about s. Theorem 3.6
is included here because it shows that the secret sharing scheme can simu-
lated and therefore it can be used in zero-knowledge protocols (see Section
6.3).

3.5 Efficiency and Security

In this sections the computational requirements of the scheme are estimated
and the scheme is compared with that of [Fel87].

First consider the size of the secret shares. As a secret is |q| bits long,
the information rate (see [BD90]) is

size of secret

size of share
=

1

2

Ignoring the time needed to evaluate F (x) and G(x) (this is reasonable as
the polynomials are only evaluated on small arguments), the dealer has to
compute k commitments in order to distribute a share. This requires less

3.5 Efficiency and Security 21

than 2|q|k multiplications modulo p or approximately 2k multiplications pr
bit of the secret.

The verification requires k − 1 exponentiations modulo p and the com-
putation of one commitment. This can be done in less than (again ignoring
the computation of ij for j = 1, . . . , k − 1)

2|q|(k − 1) + 2|q|+ (k − 1) ≈ (2|q|+ 1)k

multiplications. This is however, a pessimistic estimate as many of the expo-
nents in the exponentiations are rather small (in particular, for P1 they all
equal 1).

For a moment return to Feldman’s scheme. Using this scheme and a
probabilistic encryption scheme based on discrete logarithms in ZZp, the com-
putational requirements when distributing an l-bits secret are very similar to
the requirements in our scheme when distributing a |q|-bits secret (note that
|q| ≈ 2l).

With respect to security the two schemes are dual to each other, because
the encryption schemes used in [Fel87] only protects the secret under the
assumption that the one-way function cannot be inverted. However, even
an infinitely powerful dealer cannot distribute incorrect shares. In contrast,
the new scheme protects the privacy of the secret unconditionally, but the
correctness of the shares depends on a computational assumption.

Having these two secret sharing schemes it is natural to ask for a non-
interactive scheme in which

• no information about the secret is revealed; and

• even an infinitely powerful dealer cannot compute inconsistent shares.

However, the following shows that such a scheme is impossible in the model
which is used here. As before let proof denote all the information which
the dealer broadcasts in a non-interactive secret sharing scheme, let si be
the secret share which is sent to Pi, and let verify(i, si, proof) denote the
verification predicate, which Pi computes in order to verify his share. Now
consider P1, . . . , Pk−1 and assume that they have received correct shares. Let
Sk be the set of shares which Pk will accept:

Sk(proof) = {sk | verify(k, sk, proof) = 1}.

3.6 Computing on Shared Secrets 22

As even an all powerful dealer cannot find inconsistent shares the following
holds for all sk ∈ Sk:

combine[(1, s1), (2, s2), . . . , (k, sk)] = s

for some secret s. This means that P1, . . . , Pk−1 can find the secret by guess-
ing a secret share sk ∈ Sk and then combine their own shares with sk.

In particular note that Sk(proof) is in NP, if verify can be computed in
polynomial time. Thus P1, . . . , Pk−1 need “only” nondeterministic polyno-
mial time in order to find the secret if the scheme is unconditionally secure
for the shareholders. Similarly, a dishonest dealer can always distribute in-
consistent shares in nondeterministic polynomial time, if the scheme reveals
no information about the secret.

We close this section with a short remark on the models of adversarial
participants. Feldman considers

• a static model in which the set of cheating participants is constant; and

• a dynamic model in which the cheating participants are chosen depend-
ing on proof .

Feldman used the ideas of zero-knowledge when defining security of secret
sharing schemes and required that the dealer can be simulated. In order
to prove security in the dynamic model according to this definition it was
necessary to permute the shares, but Feldman conjectured that the scheme
would also be secure without this complication. In our scheme we are able
to prove security without permuting the shares because the proof is based
on information theory rather than simulations. As the two schemes are quite
similar, this seems to support Feldman’s claim that it is not necessary to
permute the shares in his scheme. Note that Theorem 3.6 says that our
scheme is secure in the static model affording to Feldman’s definition.

3.6 Computing on Shared Secrets

As mentioned in Section 3.3 verifiable secret sharing is an important tool in
the construction of secure protocols for multiparty computations. In partic-
ular, the constructions in [BGW88] and [CCD88] both utilize the fact that

3.6 Computing on Shared Secrets 23

it is easy to compute linear combinations of shared secrets. In this section
we show that this is also true if the secret sharing scheme presented here is
used, and an application of this property is given.

Linear Combinations

Assume that two secrets s′ and s′′ have been distributed as described in
Section 3.4. In particular let (s′i, t

′
i) and (s′′i , t

′′
i) be Pi’s share of s′ and

s′′, respectively, and let (E ′
0, E

′
1, . . . , E ′

k−1) and (E ′′
0 , E ′′

1 , . . . , E ′′
k−1) be the

broadcast messages when the two secrets were distributed.

Each Pi can compute (E0, E1, . . . , Ek−1) corresponding to a verifiable
distribution of s = s′ + s′′ mod q as

Ej = E ′
jE

′′
j for j = 0, 1 . . . k − 1.

Furthermore, Pi’s select share, (si, ti), of s is given by

si = s′i + s′′i mod q
ti = t′i + t′′i mod q

It is easy to see that if both (s′i, t
′
i) and (s′′i , t

′′
i) are correct shares (satisfy

verify) then (si, ti) is also a correct share of s; i.e.

gsihti = E0E
i
1 . . . Eik−1

k−1 .

If, instead, s is computed as s = as′ mod q for some a ∈ ZZ∗
q , then Pi can

compute his share (si, ti) and (E0, E1, . . . , Ek−1) as follows

Ej = E ′
j
a for j = 0, 1, . . . , k − 1

si = as′i mod q
ti = at′i mod q

Again, it is easy to see that

gsihti = E0E
i
1 . . . Eik−1

k−1 .

In both of the above cases Lemma 3.3 implies that any k shareholders who
have accepted their shares of s′ and s′′ can find a pair (s, t) such that

gsht = E0.

Furthermore, it is an immediate consequence of Theorem 3.5 that fewer than
k persons have no information about s if s′ and s′′ are distributed correctly.

3.6 Computing on Shared Secrets 24

Choosing an Anonymous, Shared Secret

In [IS91] it was shown how to select and distribute a secret without a mu-
tually trusted authority, who knows the secret and distributes it. In this
section we show how to achieve the same goal with verifiable secret sharing
by demonstrating how n participants can select a secret such that none of
them knows it and distribute it verifiably among themselves in a (k, n) secret
sharing scheme, where 2k − 1 ≤ n. It is not hard to generalize the proposed
method to let l person (2k − 1 ≤ l ≤ n) select and distribute the secret.

Let P1, . . . Pn be the n persons who want to choose a secret and distribute
it among themselves, and assume that each Pi can make digital signatures.
As each participant is going to act as a dealer in the following, it is required
that each Pi can broadcast messages and send secret messages to each Pj for
j �= i. The protocol for Pi is

1. Choose si0 ∈ ZZq at random.

2. Distribute si0 verifiably among P1, . . . Pn.
Furthermore Pi signs each secret share and sends the signature with
the share.

3. Verify all the received shares. If a share is incorrect, Pi publishes the
share and its signature. Then Pi stops.

4. Compute the share (si, ti) of s = s10 + s20 + · · · + sn0 and the corre-
sponding public information (E0, E1, . . . , Ek−1) as described above.

It follows from the arguments in the previous subsection that

• (si, ti) is a correct share of s, if Pi has accepted all shares correctly; and

• any k participants can find a pair (s′, t′) such that E0 = E(s′, t′).

Let S ⊆ {1, 2, . . . , n} be a set of k participants. These k participants can
force s to be any value they want, if they choose their si0’s depending on
(si0)i/∈S (which they can find).

In the following it is shown that s is uniformly distributed in ZZq, and
that fewer than k participants have no information about s.

By saying that a group of participants cooperate we mean, that they
can put together all their information and agree on all messages that they

3.6 Computing on Shared Secrets 25

send to other participants.

Theorem 3.7
If Pi chooses si0 ∈ ZZq uniformly at random and at most k − 1 of the other
parties cooperate, then s is uniformly distributed in ZZq.

Proof
Let S ⊆ {1, 2, . . . , n} be a set of at most k− 1 cooperating participants and
assume that the participants not in S follow the prescribed protocol (i /∈ S).

First note that since n ≥ 2k−1, each participant in S sends in step 2 at
least k correct shares (oTherwise the protocol is stopped). Since each si0 can
be computed from k correct shares, each Pi is able to open his commitment
to si0.

Since no set of at most k − 1 participants (excluding Pi) get any infor-
mation about si0, this implies that no Pj for j �= i can open his commitment
to si0 depending on the value of si0. As Pi chooses si0 at random this implies,
that

s = s10 + s20 + · · ·+ sn0

is uniformly chosen in ZZq. �
As before let viewS be the messages, which the participants in a subset S

of {1, . . . , n} see. Thus viewS consist of all messages, which the participants
in S receive plus the sequence of random bits they use during the protocol.

Let Prob[s] denote the (a priori) probability that s ∈ ZZ∗
q will be chosen

and let Prob[s | viewS] denote the (a posteriori) probability that s has been
chosen given viewS.

Theorem 3.8
For any S ⊂ {1, 2, . . . , n} of size at most k − 1 and any viewS

Prob[s] is chosen | viewS] = Prob[s]

for all s ∈ ZZq, if the participants not in S follow the protocol.

Proof sketch
Under the assumptions in the theorem it follows from Theorem 3.7 that

Prob[s] =
1

q

3.6 Computing on Shared Secrets 26

for each s ∈ ZZq.

Given S ⊂ {1, 2, . . . n} of size k − 1 and viewS. For any s ∈ ZZq there
exists qn−(k−1)−1 = qn−k values of (sj0)j /∈S such that

s = s10 + s20 + · · · sn0

and, as in the proof of Theorem 3.5, for each of these values of sj0 (j /∈ S)
there is exactly one choice of the F - and G-polynomials for each Pj, which
gives the same messages from Pj in step 2. �

Chapter 4

Secret Sharing in a Public-Key
Scenario

The previous chapter showed how a secret can be distributed verifiably such
that no information about the secret is revered to non-authorized groups.
However, this high level of secrecy is not always needed. If, for example, the
secret is the private key in a public key crypto-system, the corresponding
public key may contain all Shannon information about the secret. Hence,
there is no Shannon information to hide.

In this chapter it is shown how one can take advantage of the public
key, when distributing the private key. More precisely we shall see how a
secret s ∈ ZZq can be shared verifiably in a (k, n)-threshold scheme when the
corresponding public key h = gs is known to all participants. This scheme
will be used in Chapter 6 and 9. As in Section 3.6 this secret sharing scheme
can also be used to let n participants select a private and public key and
distribute the private key among themselves.

The scheme presented now is similar to that of [Fel87] (based on discrete
logarithms) except that the encryption scheme is not needed. Furthermore,
the shares are not permuted as the simple scheme gives sufficient security in
the later applications to distributed proofs.

4.1 Verification using the Public Key 28

4.1 Verification using the Public Key

Assume the dealer has a secret s ∈ ZZq and is committed to s through a
public key h = gs. This secret can be distributed to P1, . . . , Pn as follows (i
is the public information about Pi):

protocol distribute

1. Compute shares si using the Shamir secret sharing scheme in the field
IF = ZZq by first choosing a polynomial f = f0 + f1x + . . . + fk−1x

k−1

over ZZq of degree k − 1 satisfying f(0) = s (hence f0 = s) and then
computing

si = f(i).

Let proof = (gf1 , . . . , gfk−1).

2. Send si secretly to Pi, and broadcast proof to all n participants.

Thus the dealer has to broadcast k − 1 elements in Gq and to send secretly
n elements in ZZq.

When all shares have been distributed each Pi first verifies that proof
has the correct form. Let proof = (E1, E2, . . . , Ek−1). Then each Pi verifies
that verify(i, si, poof) = 1 where

verify(i, si, proof) = 1 ⇐⇒ gsi = h
k−1∏
j=1

Eij

j

The public information corresponding to the share si is denoted hi = gsi .
Thus hi depends on si in the same way that h depends on s. A participant
not knowing si can compute hi as

hi = h

k−1∏
j=1

E
ij
j

If the dealer follows the protocol, all honest agents will accept their shares,
and hi = gsi will be publicly known for i = 1, 2, . . . , n. The next proposition
shows, that no matter how the dealer computes the shares, any k participants
who have accepted their shares can find s.

4.1 Verification using the Public Key 29

Proposition 4.1
Any k participants, who have accepted their shoes correctly, can find logg h.

Proof
Assume that the k participants are P1, . . . , Pk. It is sufficient to show that
the unique polynomial f ′ of degree at most k − 1 satisfying

f ′(i) = si for i = 1, . . . , k

also satisfies f ′(0) = s. As before let proof = (E1, E2, . . . , Ek−1) and let ej

be defined by Ej = gej for j = 1, . . . , k − 1. Then

h
k−1∏
j=1

E
ij
j = hi = gsi = gf ′(i)

implies

s +
k−1∑
j=1

eji
j = f ′(i) mod q

for i = 1, 2, . . . , k. Now the uniqueness of f ′ implies that f ′(0) = s. �
As the secret is uniquely determined from the public key, this lemma

immediately implies that

Theorem 4.2
The verifiable secret sharing scheme above satisfies requirement 1) and 3) of
Definition 3.1 under assumption DLP.

For the scheme in Section 3.4 it was shown that the dealer reveals no
Shannon information about the secret, but as previously mentioned such a
claim makes no sense here, because each paticipant has all Shannon infor-
mation about s to begin with. Instead we will show that if a probabilistic
polynomial time algorithm can find s after it has been distributed, then s
can also be found in probabilistic polynomial time given h. To be more pre-
cise we will show, that any number of participants can simulate the dealer
perfectly no matter what shares they get (the reader is referred to [GMR89]
for a precise definition of simulations and perfect simulations). Thus fewer
than k participants do not get any information about s, that allows them to

4.1 Verification using the Public Key 30

compute something, which they could not have computed before the secret
was distributed.

Theorem 4.3
Any l participants having shares (sij)j=1,... ,l can find (gf ′

j)j=0,...k−1, such that

f ′(x) = f ′
0 + f ′

1x + · · ·+ f ′
k−1x

k−1

is a random polynomial of degree at most k − 1 satisfying

f ′(0) = s

f ′(ij) = sij , j = 1, . . . l.

Proof
If l ≥ k the proposition is trivial as any k agents can find the polynomial
used by the dealer.

Assume that 1 ≤ l < k and (in order to simplify the notation) that the
l agents in question are P1, . . . , Pl. As in the proof in [Fel87] they can gen-
erate f ′ as follows:

1. Choose k − 1− l random “shares” sl+1, . . . , sk−1 corresponding to the
public information l + 1, . . . , k − 1.

2. Find gf ′
i for i = 0, . . . , k − 1, where the polynomial f ′(x) = f ′

0 + · · ·+
f ′

k−1x
k−1 satisfies f ′(i) = si for i = 1, . . . , k − 1 and f ′(0) = s (see

below).

As sl+1, . . . , sk−1 were chosen at random the (unknown) polynomial f ′ gen-
erated this way is completely random such that

f ′(0) = s

f ′(j) = sj, j = 1, . . . l.

It only remains to show how gf ′
i ’s are found. The polynomial f ′ is going to

4.1 Verification using the Public Key 31

satisfy (s0 = s):

1 0 02 · · · 0k−1

1 1 12 · · · 1k−1

...
...

...
...

1 k − 1 (k − 1)2 · · · (k − 1)k−1

f ′
0

f ′
1
...

f ′
k−1

 =

s0

s1
...

sk−1

This k×k matrix is a Van der Monde matrix, and it has an inverse, A. Thus

A

s0

s1
...

sk−1

 =

f ′
0

f ′
1
...

f ′
k−1

 .

Let

A =

a00 a01 a02 · · · a0,k−1

a10 a11 a12 · · · a1,k−1
...

...
...

...
ak−1,0 ak−1,1 ak−1,2 · · · ak−1,k−1

and note that P1, . . . , Pl can find each aij. Thus gf ′
i can be computed for

i = 0, . . . , k − 1 by the formula (gs0 = h is known)

k−1∏
j=0

gsjaij = gf ′
i

This proves the theorem. �
This theorem is a somewhat stronger statement than just saying that it

is possible to generate messages with the same distributions as in protocol
distribute, because the simulator generates a predetermined set of shares.
This means that there is no particularly “bad” set of shares, which makes it
easier for the shareholders to find the secret. However, the theorem does not
exclude that certain broadcasted messages allow fewer than k shareholders
to find the secret, but the dealer will choose such messages with very small
probability.

The above simulation does not work, if a probabilistic polynomial time
algorithm is allowed to choose the cheating participants depending on proof

4.2 Linear Combinations 32

(a dynamic adversary), because when the simulator generates proof , it has
already selected a set of k − 1 participants for which it knows the shares.
Thus the simulator cannot compute the shoe of a participant outside this set
without knowing s. This problem is solved in [Fel87] by permuting the shares,
but in the applications in this work, this complication is not necessary.

4.2 Linear Combinations

In Section 3.6 we saw that it was easy to compute the shoes and the broad-
casted information of linear combinations of shared secrets. The scheme
presented in this chapter also has this property. Namely, let s′, s′′ ∈ ZZq be
two distributed secrets and let

s′i be Pi’s secret share of s′

s′′i be Pi’s secret share of s′′

(E ′
1, . . . , E ′

k−1) be the broadcasted proof for s′

(E ′′
1 , . . . , E ′′

k−1) be the broadcasted proof for s′′

Then Pi’s secret share of s′ + s′′ mod q is s′i + s′′i mod q and the broadcasted
information is the pairwise product of the tuples described above.

Similarly, Pi’s secret share of s = as′ mod q for a ∈ ZZ∗
q is as′i mod q and

the broadcasted information (E1, E2, . . . , Ek−1) is given by

Ei = E
′a
i i = 1, 2, . . . , k − 1.

It is easy to see that these values correspond to correct shares if the original
shares are correct.

4.3 Selecting and Distributing a Secret Key

We now show how P1, P2, . . . , Pn can select a pair of keys (s, h) where h =
gs such that for a fixed parameter k (1 ≤ 2k − 1 ≤ n), the secret key is
distributed in a (k, n)-threshold scheme. It is not-hard to generalize the
protocols to the general scheme presented in [Fel87] and such that l ≥ 2k−1
members select the secret key and distribute it to the n members of the
group.

4.3 Selecting and Distributing a Secret Key 33

Until now we have silently assumed that p, q and g was given a priori.
However, if this is not the case, they can easily be selected by P1, . . . , Pn and
in this case the key generation consists of the following three phases:

1. Select the primes p and q, and the generator g of the subgroup Gq of
ZZ∗

p .

2. Select the secret key x ∈ ZZq and the corresponding public key h = gx.

3. Distribute x.

Each of these steps will be described in detail in the following.

Generating p, q and g

Due to the fact that p, q and g are public information, the purpose of this
step of the key generation is to make the participants agree on these numbers.

Let BC(m, r) denote a commitment to m ∈ {0, 1}∗ using the random
string, r. Any commitment scheme will do, but we suggest using the com-
mitment scheme described in Section 3.4 as it is very efficient and is based
on assumption DLP. The keys to this commitment scheme can be supplied
by a trusted party (for example by the key authentication center which is
needed anyway).

Let GenPrimes be a deterministic algorithm running in polynomial time,
which on input a random seed and a security parameter with high probability
generates primes p and q and a generator, g, of Gq. As mentioned in Section
2, GenPrimes can use a probabilistic primality test and start by selecting q
(see also [Gor84] for a description of these ideas). When p and q are found,
it is easy to find g. Using this algorithm, the members can find p, q and g
as follows:

1. Using the commitment scheme all members simultaneously flip l coins
to generate a common random seed.

2. Each member runs GenPrimes on input the seed and the security pa-
rameter, which is a common input to the participants.

A cheating participant might deliberately obtain wrong values of p, q and
g, but this problem can be solved by either requiring that a majority of the
participants are honest or that they all agree on these values.

4.3 Selecting and Distributing a Secret Key 34

Selecting s and h

The keys are selected as follows:

1. For i = 1 to n: Pi chooses si0 ∈ ZZq at random (uniform distribution)
and computes σi = gsi0 . Then a random string ri is chosen and Ci =
BC(σi, ri) is broadcasted to all members.

2. When all n members have broadcast a commitment each Pi opens Ci

starting with Pn, Pn−1 and so forth.

3. The public key, h, is computed as h =
∏n

i=1 σi.

Now all members know the public key, but they cannot find the secret key
s =

∑n
i=1 si0 unless they all work together (or some of them can compute

discrete logarithms).

The use of the commitment scheme and the fact that the commitments
are constructed and opened in opposite orders guarantee that, if Pi trusts
his own coins then the distribution of the secret key is polynomially indis-
tinguishable from the uniform distribution.

Distributing the Secret Key

It is assumed that Pi can send secret messages to each Pj (1 ≤ i, j ≤ n)
and that Pi can broadcast messages. Furthermore, Pi must be able to make
digital signatures.

The idea in this phase is that each Pi first distributes his part of the
secret key, si0, verifiably using protocol distribute. When all n members
have done this, each Pi can compute a verifiable share of

s = s10 + s20 + · · ·+ sn0

using the properties described in Section 4.2 and the technique presented in
Section 3.6.

We will require that Pi signs h as a proof that he accepts h as the public
key of the group. When all members have signed h, a key authentication
center verifies the signatures, and if they are correct, it makes a certificate
showing that h is the public key of the group.

4.4 Generalizations 35

For each share si of s let hi denote gsi , and let (E1, E2, . . . , Ek−1) denote
the public information corresponding to s. Then each Pj can compute each
hi as

hi = h
k−1∏
j=1

Eij

j

It follows from Section 4.2 that after completion of the key distribution,
any k honest members can find the secret key, whereas fewer than k members
do not get any computational advantage compared to the situation where
they are given h and σ1, σ2, . . . , σn, on such that h =

∏n
1 σi.

Note furthermore, that all members have to complete the protocols and
finally sign the public key in order to gain any advantage, because otherwise
the protocols are restarted and a new secret key selected. In future applica-
tions of this protocol it can therefore be assumed that all honest members
get the expected number of messages.

4.4 Generalizations

The protocols presented in this and the previous chapter can be extended to
compartmented schemes. Such a scheme is an extension of threshold schemes
in which the participants are split into a number of subgroups S1, . . . , Sm,
and computation of the secret requires participation of ki members of Si.

Furthermore, as previously mentioned not all members of the group have
to take part in the selection of the keys (as long as they trust someone who
does participate).

Chapter 5

Threshold Crypto Systems

The concept of group oriented cryptography was introduced in [Des88] as a
means of sending messages to a group of people, such that only certain subsets
of the members are able to read the message (decipher the ciphertext). The
rules for who is allowed to decipher depend on the positions of the members
within the organization.

The members of a group are said to be known if the sender has to know
them (a public key for each member), and a group is called anonymous if
there is a single public key for the group independently of the members. In
general, an anonymous group has a much shorter public key than groups with
known members, but it is difficult to handle the situation where a member
leaves the group, as this usually requires a new secret key to be selected.
Desmedt presents crypto systems for both types of groups in the case where
deciphering requires the cooperation of all members.

Group oriented cryptography has been further studied in [Fra90], [DF90]
and [Hwa91]. Frankel used in [Fra90] the organization of individuals in groups
to reduce the problem of distributing and managing public keys. His solution
required clerks at the sending as well as the receiving organization. Here, any
access structure can be obtained as the clerks at the receiving organization
decide, who is allowed to read the message. However the clerks belonging to
the same organization can, by cooperating, decrypt messages.

In [DF90], Desmedt and Frankel modified the El Gamal public-key
crypto system (see [EG85]) so as to work for a group of n people. This
scheme has the property that the group has a single public keys and the
corresponding secret key is shared among the members such that any k of

37

them can decipher, but fewer than k persons cannot (a treshold crypto sys-
tem). This scheme requires a trusted person to choose a secret key for the
organization and distribute it to the members.

In [Hwa91] a somewhat different approach is taken Here the El Gamal
public-key crypto system and the Shamir secret sharing scheme are used to
encrypt a key to a conventional crypto system, which is then used to encrypt
the message. This scheme does not require a trusted person to distribute
the secret key — each individual has its own secret keys but deciphering
still requires the cooperation of k out of n individuals. This scheme has the
advantages that the sender can choose k, but the members of the group are
no longer anonymous — the sender has to know a public key of each member
of the group.

Here we shall only consider anonymous groups. This chapter applies the
secret sharing scheme proposed in Section 4.3 to the threshold crypto system
in [DF90]. This results in a scheme with the following properties:

• A trusted party, who selects and distributes the secret key can be
avoided, as the members of the group can select and distribute the
key themselves.

• Each member of the group can verify that his share of the secret key is
correct.

• A trusted party is required in order to verify the validity of recovered
plaintext, but it does not need any secret keys.

• The threshold scheme is as secure as El Gamal’s public-key crypto
system (see [EG85]).

The second of these properties is very important as the shares are no longer
computed by a trusted party, and each member should therefore convince
himself that they are computed correctly.

The first two improvements are quite easy to obtain, when the schemes
from Section 4.3 are given. In the following we first give a brief description of
the EL Gamal public-key crypto system. Then the protocol for deciphering
is presented, and finally it is proven that the scheme is as secure as the El
Gamal scheme.

The material in this chapter has been published in [Ped91c].

5.1 The El Gamal Public-Key Crypto System 38

5.1 The El Gamal Public-Key Crypto System

In [EG85], El Gamal proposed a public-key crypto system with public key
(p, q, g, h) (see Chapter 2) and secret key s = logg h. A message m ∈ Gq is
enciphered as

c = (gr, mhr) where r ∈ ZZq is chosen at random.

Someone knowing s can decipher c = (c1, c2) as follows:

m = c2c
−s
1 .

Assumption DH implies that it is hard to decrypt c given only c and the
public key. However, due to the homomorphism property this crypto system
is vulnerable to a chosen ciphertext attack and m should therefore have
sufficient redundancy (or a message authentication code should be appended
to m), such that valid messages can be recognized.

5.2 The Threshold System

The following also works if a trusted party has selected and distributed the
secret key, but we only consider the situation where a group of n ≥ 2k − 1
people P1, P2, . . . , Pn have selected a public key (g, h) as described in Section
4.3. Thus the secret key s = logg h is distributed among P1, P2, . . . , Pn in
a (k, n) secret sharing scheme. Pi’s secret share is denoted si and each Pi

(i = 1, 2, . . . , n) knows all the values hi = gsi for i = 1, 2, . . . , n.

Anybody knowing the public key can send a message m ∈ Gq secretly
to the organization by sending the ciphertext

(c1, c2) = (gr, mhr).

Any k members of the group, say P1, P2, . . . , Pk, can later recover the plain-
text as follows (see also [DF90]):

protocol decipher

1. Each Pi finds a1, a2, . . . , ak such that s =
∑k

i=1 aisi.

2. Each Pi computes Ci = caisi
1 and sends Ci secretly to a trusted center.

5.3 Security of the Scheme 39

3. The trusted party computes m′ = c2(
∏k

i=1 Ci)
−1.

If m′ is a valid messages, the trusted party publishes m′.
Otherwise the trusted party announces that the message is invalid.

The participation of the trusted center is necessary in order to prevent the
presently known chosen ciphertexts attacks against the El Gamal system.

protocol decipher makes it possible for a dishonest member (say
Pj) to prevent (c1, c2) from being deciphered by sending Cj �= c

ajsj

1 . This will
probably result in the trusted party rejecting the plaintext.

This problem can be avoided by requiring that each member proves that
Ci has been computed correctly. This can for example be done using the effi-
cient proof system for simultaneous discrete logarithms presented in [Cha91]
(this protocol is also described in Section 7.1, protocol sdl). Without
going into the details here, it should be mentioned that the trusted cen-
ter can execute this protocol with P1, P2, . . . , Pk simultaneously and reuse
some of the computations in each execution. This parallel execution remains
zero-knowledge and is very efficient.

When this proof system is added to protocol decipher, the previ-
ously mentioned fraud is impossible. Therefore the only way for a dishonest
participant to prevent a plaintext from being recovered is by stopping the
execution of the protocol.

5.3 Security of the Scheme

The following theorem shows that if a set, D (for dishonest), of fewer than
k persons can find the share of a person outside D in a chosen ciphertext
attack, then the secret key in the original El Gamal scheme can be found by
a similar attack. By arguments similar to the proof of Theorem 5.1 it can be
shown that any attack against the threshold scheme can be converted into a
similar attack against the El Gamal scheme.

For ease of exposition we shall identify D with the set of indices of the
persons in D. For any subset D ⊂ {1, . . . , n}, let wiewD denote the messages
that the parties in D saw in the key distribution protocol

proof i; for i = 1, 2, . . . , n
sij; for i = 1, 2, . . . , n; j ∈ D
rj; for j ∈ D

5.3 Security of the Scheme 40

where proof i is the message which Pi broadcasts when distributing si0, sij is
Pj’s share of si0, and rj ∈ {0, 1}∗ is the random bits used by Pj. Further-
more, the participants in D received (σ1, σ2, . . . , σn) as input to this protocol.

Theorem 5.1
Let D be a set of l participants (l < k, l + k ≤ n) such that the participants
in M = {1, . . . , n} \D have followed the key selection and key distribution
protocol.

If for some t ∈ M there is a probabilistic polynomial time algorithm, A,

A(p, q, g, (σi)i=1,... ,n, viewD)

such that for some set of sij (i = 1, 2, . . . , n, j ∈ D), A outputs logg(ht) with
probability, π, then there is a probabilistic polynomial time algorithm, B,
such that B(p, q, g, H) equals logg(H) with probability π. The first proba-
bility is over the distribution of viewD (when the (sij)j∈D are fixed) and the
coins of A, whereas the probability of B’s success is over the random choice
of H and the coins of B.

In addition, A may ask an oracle for the decryption of ciphertexts, and
in that case B is also allowed to get ciphertexts deciphered with respect to
the public key H.

Proof
In the following p, q and g are fixed. For m, h ∈ Gq and y ∈ ZZq let
E(m, y, h) = (gy, mhy) denote the enciphering function in the El Gus public-
key crypt0 system.

Let the members in D be P1, P2, . . . , Pl and let t = n. On input
(p, q, g, H), algorithm B consists of two parts:

1. Generate the input to A.

2. Simulate A.

The first part is done as follows:

1. Invent n− 1− l “players” (Pl+1, . . . , Pn−1), who are going to be honest
(follow the protocol) and a n’th member Pn who does not follow the
protocol, but nonetheless his behaviour cannot be distinguished from
that of an honest player.

5.3 Security of the Scheme 41

2. Simulate the key selection scheme.

(a) For l < i < n select si0 ∈ ZZq at random, compute σi = gsi0 . Let
σn = H.

For 1 ≤ i ≤ l, Pi selects σi as he would do in an execution of the
key seliction protocol.

(b) Compute the public key h =
∏n

i=1 σi.

3. Simulate the key distribution protocol.

(a) For l < i < n choose the polynomial fi and compute Eij for
j = 1, 2, . . . k− 1 such that the participants in D get the required
shares.

(b) For i = n generate proof n as described in the proof of Theorem 4.3.
In this step B also chooses shares of sn0 = logg H corresponding
to Pl+1, Pl+2, . . . , Pk−1(sn,l+1, sn,l+2, . . . , sn,k−1).

(c) For 1 ≤ i ≤ l distribute si0 as Pi would have done.

4. If one of the participants does not accept his share goto 1.

Whenever H is chosen at random, the Eij’s are uniformly distributed in Gq

such that the participants in D get the correct shoes, and (σi)i=1,... ,n have the
same distribution as after an execution of the key selection scheme. Thus
this part generates viewD with the required distribution (the random bits
used by Pj for j ∈ D are easy to generate).

This means that we are able to supply the input to A with the correct
distribution and we are therefore able to simulate A as described below.

Since there are at least k honest participants, and since each Pi (i ∈ D)
has executed the key distribution protocol properly each of them has sent
at least k correct shares of si0 = logg(σi). From these shares it is possibly to
find a polynomial fi of degree at most k − 1 such that fi(j) is Pj’s correct
share of si0 for i ∈ D and j = 1, 2, . . . , n. Thus B knows the following correct
shares:

sij for 1 ≤ i < n; 1 ≤ j ≤ n;
snj for 1 ≤ j ≤ k − 1.

5.3 Security of the Scheme 42

Hence B knows si0 = logg σi for i = 1, 2, . . . , n− 1. Due to the fact that for
m ∈ Gq and y ∈ ZZq

E(m, y, H) = (C1, C2) ⇐⇒ E(m, y, h) = (C1, C2

n−1∏
i=1

Csi0
1)

the participants can map ciphertexts in the scheme with public key H to the
corresponding ciphertext in the scheme with h as public key and vice versa.
Whenever A requests (c1, c2) to be deciphered, B does the following:

1. Compute the corresponding ciphertext C = (C1, C2) in the system with
public key H

C1 = c1 and C2 = c2(
n−1∏

1

c−si0
1)

2. Ask C to be deciphered. Let m be the plaintext corresponding to C
and return m as the decryption of (c1, c2).

As the input to A is constructed with the correct distribution, it will
output sn with probability π. But sn is given as

sn =
n∑

i=1

sin

and since sin is known for 1 ≤ i < n, this means that B can find snn and
therefore B can find the following k shares of sn0 = logg σn = logg H:

sn1, sn2, . . . , sn,k−1, snn

Now, it is easy to find logg H from these k shares. �
In the proof of Theorem 5.1 we only considered the case where all n

participants choose the secret key. If h is selected and distributed by a
trusted party, who does not cooperate with the dishonest participants, the
proof is even simpler as we do not have to consider σ1, σ2, . . . , σn.

The above theorem shows that the threshold scheme is as secure as the
El Gamal public-key crypto system. However, the scheme is also vulnerable
to the same presently known chosen ciphertext attacks. Such attacks are

5.3 Security of the Scheme 43

avoided in the original system by having sufficient redundancy in the plain-
text, and therefore it is necessary to have a trusted machine, that collects
all the Ci’s, finds the plaintext and verifies that thy plaintext is valid. Only
these plaintexts are subsequently revealed to the members.

If the ideas presented above are used with a public-key scheme which is
secure against chosen ciphertext attacks it seems that the trusted party in
the deciphering protocol can be avoided. However, in that case one should
by careful to avoid problems paused by members stopping in the middle of
an execution of protocol decipher.

Chapter 6

Distributed Proofs

In an interactive proof system for a language, L, (see [GMR89]) an arbitrarily
powerful prover convinces a polynomial time bounded verifier that a given
string, x, is in L. However, in practical protocols the prover has to be
polynomially bounded too, and in this case the advantage of the prover is not
his computational power, but rather the knowledge of a secret (see [BC86] and
[Cha86]). Therefore we will here consider a polynomially bounded prover,
who has secret key, and using this secret key he can convince the verifier of
an assertion regarding the common input x ∈ {0, 1}∗ (for example that x ∈ L
for some language L). Whenever there is a public key corresponding to the
secret key, it will be considered a part of the common input. Sometimes we
shall also call the secret key a witness of the assertion.

It is essential in many applications that only someone who has a witness
(the prover) can prove the assertion, but in other situations this property
constitutes a practical problem (see for example Chapter 9).

A distributed proof makes up for this shortcoming by allowing the prover
to distribute his witness to n agents in a (k, n)-secret sharing scheme, such
that any k of these agents later can play the role of the prover.

The agents can (of course) do this by first recovering the secret and
subsequently one of them can execute the usual protocol instead of the prover.
However, this would be against the intentions of the prover, because he does
not want anybody else to know the witness.

The goal of a distributed proof is to convince the verifier of the assertion,
but the agents are not allowed to obtain any more information about the
secret. A distributed proof with this property will be called secure.

6.1 Definition of Distributed Proofs 45

In this section we first describe the model and define distributed proofs
formally, and then a (theoretical) distributed proof for any language in NP is
constructed. Finally, we apply distributed proofs to an identification scheme
showing how a number of agents can represent a single person.

To avoid confusion we mention here that distributed proofs are different
from multi-prover proof systems (defined in [BGKW88]), as we restrict the
agents to polynomial time and allow that (dishonest) agents send (secret)
messages to each other.

6.1 Definition of Distributed Proofs

The verifier and each agent will be modeled by an interacting probabilistic
polynomial Turing machine. This is a polynomially bounded Turing machine,
which in addition to the work tape has the following tapes

• a tape with randomly chosen bits (read-only; decides the random choices
of the machine);

• a tape for common input (read-only; shared by all users);

• a tape for auxiliary input (read-only; can only be read by the owner);

• a tape for sending messages (can be read by the other machines);

• a tape for receiving messages (read only).

All agents share the same tape for sending messages to and receiving mes-
sages from the verifier. Thus this model can be shortly characterized by the
following properties:

• Broadcasting is possible;

• Messages from the agents are not authenticated;

• Secret communication is not provided.

Figure 1 depicts this model in the case of two agents.

The machines can do computations simultaneously, but only one ma-
chine at a time can write a message on one of the broadcast tapes, and

6.1 Definition of Distributed Proofs 46

Figure 6.1: Model of two agents and one verifier. The work tapes and the
random tapes are not shown.

when this machine has finished writing this message, all the other machines
immediately copy it before continuing their computations.

As the model does not provide authentication of messages, we require
that whenever an agent, Pi, sends a message, m, he actually writes (i, m)
on the broadcast tape. This does not prove that Pi sent the message, but if
all agents are honest, this must be sticient to convince the verifier. On the
other hand, the lack of authentication shoed not enable dishonest agents to
convince the verifier of a false claim.

An execution of a protocol between k agents (A1, A2, . . . , Ak) and a
verifier, V , on common input x is denoted

[A1(z1), A(z2), . . . , Ak(zk), V (y)](x)

where zi is the auxiliary input of Ai and y is the auxiliary input of the veri-
fier. If a participant has no auxiliary input, this argument is just omitted.

Definition 6.1
A participant (agent or verifier) is honest if it follows the protocol in all ex-
ecutions. A participant, who is not honest, is called dishonest.

6.1 Definition of Distributed Proofs 47

Hence, an honest agent will never use his share of the witness to anything but
executing the protocols properly. In particular, an honest agent will never
help anybody finding the witness.

Dishonest agents and verifiers are modeled as described above except
that any pair of dishonest participants may share a tape such that they can
send secret and authenticated messages to each other.

Even though the origins prover distributes his secret (witness) among
n agents, he does not want that anybody (not even an agent) ever finds it.
Therefore he must trust that no set of at least k agents will ever cooperate
in order to find the secret, Hence, we will always assume that at most k − 1
of the agents are dishonest (this is a sticient, but not a necessary condition
for the prover).

Furthermore, we will assume that the set of dishonest agents is selected
when the protocol is initiated (a static model as opposed to a dynamic model
in which the set of dishonest agents can be extended after each step in the
protocol depending on the execution). Remember, however, that a dishonest
agent can perfectly well follow the prescribed protocol most of the time and
only deviate from it in certain situations.

Now consider a polynomial time predicate,R(w, x), and let L be the
language of strings x ∈ {0, 1}∗, such that there exist a secret key, w ∈ {0, 1}∗,
satisfying R(w, x). Thus

L = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗ : R(w, x)}.

As in Chapter 3 a secret sharing scheme is given by two functions, distribute
and combine, such that if

distribute(r, w) = (w1, w2, . . . , wn)

then Pi gets the secret share wi of w (r ∈ {0, 1}∗ is a random string).

In the following definitions, “non-negligible” and “overwhelming” are
always as functions of |x|.

Definition 6.2
Let R be a polynomial time computable predicate, and let a secret sharing
scheme be given by (distribute, combine).
(n + 1) interacting probabilistic polynomial Turing machines P1, . . . , Pn, V

6.1 Definition of Distributed Proofs 48

are a (k, n)-distributed proof for membership in the language, L, with respect
to (distribute, combine), if the following two requirements are satisfied

• Completeness : If x ∈ L and w is a witness of this (i.e. R(w, x)), and
if distribute(r, w) = (w1, w2, . . . , wn) then for any k (honest) agents
Pi1 , . . . , Pik , the execution of

[Pi1(wi1), . . . , Pik(wik), V](x)

results in V accepting with overwhelming probability.

• Soundness : If x /∈ L then for any k interacting Turing machines
A1, . . . , Ak and for any auxiliary inputs zi to Ai the execution of

[A1(z1), . . . , Ak(zk), V](x)

results in V rejecting with overwhelming probability.

Both probabilities are over the random choices of the agents and the verifier.
The protocol is called unconditionally secure for the verifier if the soundness
condition is fulfilled for all powerful agents.

In the following a (k, n)-distributed proof is just called a distributed
proof as the parameters k and n are clear from the context.

This definition states that a distributed proof is a proof system. It is also
possible to define a distributed proof, which is a proof of knowledge. Intu-
itively this means, that the agents prove that together they possess sufficient
information to find the secret key. By a slight modification of the definition
of proofs of knowledge in [FFS88] (alternatively we could have modified the
definition in [TW87]) we obtain

Definition 6.3
Let R be a polynomial time computable predicate, and let a secret sharing
scheme be given by (distribute, combine).
(n + 1) interacting probabilistic polynomial Turing machines P1, . . . , Pn, V
constitute a (k, n)-distributed proof of knowledge for R with respect to (dis-
tribute, combine) if the following two requirements are satisfied

6.1 Definition of Distributed Proofs 49

• Completeness : If R(w, x) and distribute(r, w) = (w1, w2, . . . , wn), then
for any k agents Pi1 , . . . , Pik , the execution of

[Pi1(wi1), . . . , Pik(wik), V](x)

results in V accepting with overwhelming probability.

• Soundness : There is probabilistic Turing machine, M , with control
over the agents such that if any k agents A1, A2, . . . , Ak can make V
accept with non-negligible probability on common input x, then

MA1,... ,Ak
(z1, z2, . . . , zk, x)

outputs a w ∈ {0, 1}∗ satisfying R(w, x) with overwhelming probability.
Here zi is the auxiliary input of Ai for i = 1, 2, . . . , k.

The machines, M , above will be called a knowledge extractor.

The reader is referred to [FFS88] for a precise definition of what it means
that MA1,A2,... ,Ak

has control over A1, A2, . . . , Ak.

When defining the security of distributed proofs we will require that
the entire process consisting of the distribution of the witness followed by
several executions of the distributed protocol be secure, as this is a natural
requirement for the original prover. Furtherrnore, this approach makes it
easier to exploit properties of the secret sharing scheme when proving that
the distributed protocol is secure.

Each execution of the protocol may involve different sets of agents and
different verifiers. However, due to the fact that a polynomial number of
polynomial time Turing machines can be simulated by a single polynomial
time Turing machine, it can be assumed that the verifier is the same in
all executions of the protocol (although she may behave differently in each
execution). This automatically handles the situation where different verifiers
cooperate. For any verifier and any set of dishonest agents consider the
following protocol:

1. The original prover distributes w among P1, P2, . . . , Pn.

2. Repeat a polynomial number of times: The verifier and the dishonest
agents select an input x ∈ {0, 1}∗ to the distributed protocol and a set
of agents with whom the protocol is executed.

6.1 Definition of Distributed Proofs 50

It can be hard in practice for the dishonest participants to select inputs in L,
but in that case x can be supplied by either an oracle or the original prover.

As a starting point we will call a distributed proof secure, if the above
protocol is zero-knowledge. However, in order to obtain a definition, which
is easier to use, we will require the existence of two simulators. The first
simulator simulates the distribution of w and outputs some extra information,
denoted distinf (for “distribution information”) about the witness that was
distributed. This extra output may be used by the second simulator, which
simulates a subsequent execution of the proof in step 2 above.

Following the ideas of [CDG88], where the security of general multiparty
protocols is defined, we therefore define

Definition 6.4
A distributed proof is secure, if for every set of dishonest agents, D (D ⊂
{1, 2, . . . , n}, #D < k), and every verifier, V ∗, for every set of auxiliary in-
puts to the verifier and the dishonest agents, there exists two probabilistic
polynomial time machines, Mdist

D and Mproof
D,V ∗ which satisfies:

1. Mdist
D ((wi)i∈D) outputs a pair (conv , distinf) such that conv is indistin-

guishable from the messages which (Pi)i∈D receive when w is distributed
subject to the constraint that Pi gets the share wi for i ∈ D.

2. Mproof
D,V ∗ (x, (zi)i∈D, aux , distinf) outputs a conversation which is indis-

tinguishable from an execution of a proof in step 2 above, when the
common input is x and the agents outside D are honest. Here zi is the
auxiliary input of Pi for i ∈ D and aux is the auxiliary input of V ∗.

The protocol is called strongly secure, if it is secure even wnen (some of) the
executions in step 2 above are executed in parallel.

If Pi only receives a share of w it is very easy to construct Mdist
D as

Mdist
D ((wi)i∈D) = (wi)i∈D.

However, as argued earlier it is reasonable that the agents require that w
be distributed verifiably. In particular, we shall consider non-interactive
verification, and in this case Mdist

D has to construct the broadcasted messages
with the correct distribution.

Before proceeding Definition 6.4 deserves a few remarks.

6.2 A Theoretical Solution 51

• It allows that an execution of the distributed protocol reveals some
information about the shares of the honest agents, as long as this in-
formation can be computed from the information, which the original
prover broadcasted in the secret sharing scheme.

• It is implicitly assumed that all dishonest participants cooperate as
they can be accessed by the simulator. This need not be the case in
practice, but if the dishonest agents cannot obtain new information
about the secret key when cooperating, they cannot learn anything
either if they do not cooperate.

• It is not required that the agents identify themselves before executing
the protocol. If someone manages to replace an agent without having a
share of the secret key, this person is considered dishonest and clearly
this person cannot reveal anything about the secret key.

• A dishonest agent who stops in the middle of the execution of the
protocol may have an advantage in knowing that x is in L. But this
is not a problem here as we are only considering the security when the
common input is in L. Thus it is the responsibility of the honest agents
that x ∈ L.

The above definitions do not say anything about how an honest agent can be
certain that x is a legal input. This problem is not important for the definition
of distributed proofs, but it must be solved in applications of distributed
proofs.

6.2 A Theoretical Solution

Let R be a predicate such that the prover P , who has a secret key, w, can
prove that the common input, x, is in L using the m-round protocol shown
in figure 2. Such a zero-knowledge proof system exists for every language in
NP , if probabilistic encryption exist (see [GMW86]).

The functions vi and pi in figure 2 can be computed in polynomial time
illustrating that for i = 1, . . . , m, the i’th message is computed in polyno-
mial time from some random coins (rP and rV), the input (x), some auxiliary
input (w and auxV) and the messages received in the previous rounds.

6.2 A Theoretical Solution 52

Figure 6.2: A general protocol.

Theorem 6.5
Under the Quadratic Residuosity Assumption1 and assumption DLP the fol-
lowing holds.
If the protocol in figure 2 is a zero-knowledge proof of membership in L, it
can be turned into a secure distributed proof of membership.
If the protocol in figure 2 is a proof of knowledge, it can be turned into a
secure distributed proof of knowledge.

Proof sketch
The distributed proof works as follows:

1. The prover distributes w to P1, P2, . . . , Pn using the secure verifiable
secret sharing scheme described in Section 3.4.

2. Whenever k agents, say P1, P2, . . . , Pk, are eked to execute the protocol
on common input x, they simulate the original proof system. In the i’th
round (i = 1, 2, . . . , m) they compute the prover’s message as follows:

(a) Each Pi supplies his share wi of the witness and all agents verify
that the share is correct using the predicate verify .

1This assumption says that for a Blum integer, n, and x ∈ ZZ∗
n with Jacobi-symbol 1

it is not feasible to decide whether x is a quadratic residue modulo n or not (see [Dam88]
for a precise definition).

6.2 A Theoretical Solution 53

If Pi discovers that Pj has supplied an incorrect share, he stops
the prototol.

(b) Compute w′ = combine[(1, w1), (2, w2), . . . , (k, wk)].

(c) Compute zi = pi(r, x, w′, y1, . . . , yi).

Each Pi also supplies a number of random bits. The xor of the
random bits from each participant is used as the input r.

These computations are done using the secure protocol for multiparty
computations described in [CDG88] such that the intermediate results
are kept secret.

The properties of the protocol from [CDG88] imply that this protocol is a
proof system. We now prove that it is (auxiliary input) zero-knowledge. Due
to the fast that the agents can simulate the distribution of w by choosing
random elements (as stated in Theorem 3.6), this implies that the protocol
is secure affording to Definition 6.4 (distinf is the empty string in this case).

Consider an execution of the protocol between k agents and the ver-
ifier V ∗ and assume that the agents P1, P2, . . . , Pl are dishonest, whereas
Pl+1, . . . , Pk are honest (0 ≤ l < k). The simulator, Mproof , works as follows:

1. Simulate the original proof system.

This results in a sequence of messages (y1, z1, y2, z2, . . . , ym, zm) plus
the random bits used by V ∗.

2. For i = 1, . . . , m simulate the multiparty computation which given
(x, aux1, . . . , auxl, wl+1, . . . , wk, y1, y2, . . . , yi) outputs zi. Here auxi is
the auxiliary input of Pi for 1 ≤ i ≤ l (this is not necessarily wi).

If the original protocol is statistical zero-knowledge then each zi equals pi(r,
x, w, y1, . . . , yi) with overwhelming probability. In this case the out-put of the
simulation in step 2 above cannot be distinguished from a real computation
under the Quadratic Residuosity Assumption. Hence, the entire simulation
cannot be distinguished from an execution of the protocol.

However, if the origins protocol is only computational zero-knowledge
we are only assured that zi produced in step 1 cannot be distinguished from
pi(r, x, w, y1, . . . , yi). However, an analysis of the proof in [CDG88] shows
that a simulation of the multiparty computation which outputs zi cannot

6.3 Applications to Identification Schemes 54

cannot be distinguished from a computation of pi(r, x, w, y1, . . . , yi) unless zi

can be distinguished from pi(r, x, w, y1, . . . , yi).

If the original protocol is a proof of knowledge, the distributed proof is
also a proof of knowledge, because the knowledge extractor from the original
protocol can be used in the distributed proof as well. �

The multiparty protocol from [CDG88] depends on the Quadratic Resid-
uosity Assumption, but if this protocol is replaced by the protocol from
[GHY88], which can be implemented depending on assumption DLP, this
extra assumption can be avoided. This will require a minor change in the
proof as the definition of secure protocols in [GHY88] is slightly different
from that in [CDG88].

In [CDG88] it is required that less than half the participants in the multi-
party computation are honest. This requirement is only needed in order to
handle situations where a participant stops in the middle of the computations
The only advantages such a participant obtains in our protocol, is that he
might know the result of the computation whereas the other agents do not.
However, this is not an advantage in this application, because the original
protocol is zero-knowledge.

In the proof of Theorem 6.5 we did not need an extra output from the
simulator of the distribution (distinf). However, in Chapter 9 this extra
output will be very important.

6.3 Applications to Identification Schemes

Schnorr presented in [Sch90] an identification scheme in which a prover with
a public key (p, q, g, h) and a secret key, s = logg h, identifies himself by
proving that he knows logg h. In this section it is shown how to turn this
protocol into a distributed proof of knowledge. This construction allows the
owner of s to authorize n agents such that any k of these can represent him,
whereas fewer than k cannot.

The Original Scheme

The basic identification protocol from [Sch90] with security parameters t and
τ works as follows (P is the prover and V the verifier):

6.3 Applications to Identification Schemes 55

1. Repeat the following τ times:

(a) P chooses r ∈ ZZ∗
q at random and computes g1 = gr.

P sends g1 to V .

(b) V chooses e ∈ {0, 1, . . . , 2t − 1} at random and sends e to P .

(c) P computes y = r − se mod q and sends y to V .

(d) V verifies that g1 = gyhe.

2. V accepts if and only if all τ verifications in step (d) above are satisfied.

For t = O(log|q|) and τ = Θ(|q|) this is a perfect zero-knowledge proof of
knowledge (of logg h).

Schnorr proposes to use t = 72 and τ = 1 for practical purposes. In this
case the probability of cheating is 2−72 but it is not known if the protocol
remains secure after many execution; (the “obvious” simulator has to make
271 trials in order to construct a correct conversation). Therefore we will only
consider the general scheme described above and turn that protocol into a
distributed proof.

Distributed Identification

Due to the fact that the secret key is “known” as logg h, the prover can
distribute s to P1, P2, . . . , Pn with the secret sharing scheme presented in
Section 4.1. Thus each agent, Pi, has a secret share, si of s and hi = gsi

is publicly known. For the moment we will therefore assume that after the
distribution of s, the public key of P is (g, h, h1, h2, . . . , hn) (omitting p and
q).

Any k agents (say P1, P2, . . . , Pn) can represent P as follows (the public
key is the common input and Pi has si as auxiliary input):

1. Each Pi sends i to the verifier.

2. The verifier computes a1, a2, . . . , ak such that h =
∏k

1 hai
i . Hence

ai =
∏
j �=i

j

j − i
.

3. Repeat the following τ times:

6.3 Applications to Identification Schemes 56

(a) Each Pi chooses ri ∈ ZZ∗
q at random and computes gi1 = gri . Pi

sends gi1 to V .

(b) V chooses e ∈ {0, 1, . . . , 2t − 1} at random and broadcasts e to
each Pi.

(c) Pi computes yi = ri − sie mod q and sends yi to V .

(d) V first computes g1 =
∏k

1 gai
i1 and y =

∑k
1 aiyi.

Then V verifies that g1 = gyhe.

4. V accepts if and only if all τ verifications in step (d) above are satisfied.

Theorem 6.6
The above protocol is a secure distributed proof of knowledge of discrete log-
arithms with respect to the verifiable secret sharing scheme in Section 4.1.

Proof sketch
A simple modification of the proof in [Sch90] shows that the protocol is a
distributed proof of knowledge. Furthermore, for any verifier V ∗ and any set
of at most k − 1 dishonest agents, the honest agents can be simulated using
the simulator of the original protocol for each honest agent. This and the
fact that the distribution of s can be simulated perfectly (see Theorem 4.3)
immediately implies that the protocol is secure. �

This distributed identification scheme makes it possible for the verifier
to decide which agents represent P . This can be avoided if the agents are
allowed to broadcast messages to each other, which the verifier cannot see.
This kind of broadcast should be used in step 1, (3a) and (3c) above, after
which step 2 becomes unnecessary. Then each agent can compute g1 =

∏
gai

i1

and send g1 to the verifier in step (3a), and after receiving e and all the yi’s
each agent sends y =

∑k
i=1 yiai to the verifier. The verifier should stop the

execution if not all the g1-values or all the y1-values are equal. Using this
variant the public key is still (g, h) after the distribution, and each Pi gets
(h1, . . . , hn) as auxiliary input.

Each agent knows which agents participate in the identification protocol,
but even if k−1 agents cooperates, they cannot afterwards prove to anybody
else who the k’th agent was.

6.3 Applications to Identification Schemes 57

Distributed Signatures

The original identification scheme can be turned into a signature scheme by
setting τ equal to 1, choosing t as Θ(|q|) and computing e as a “pseudorandom
hash value” of the message and g1 (see [Sch90]). Thus the signature on the
message m ∈ {0, 1}∗ is a pair (g1, y) satisfying

g1 = gyhe

where e = H(m, g1) and H is a “suitable” hash-function (see for example
[FS87] and [Sch90]).

By doing this with the distributed identification scheme, a signature
scheme is obtained in which any k agents can sign messages on behalf of
P . Let A ⊂ {1, 2, . . . , n} such that #A = k. If the first distributed
identification scheme is used, the agents (Pi)i∈A can construct a signature
(A, (gi1)i∈A, (yi)i∈A) on m which satisfies

∏
i∈A

gai
i1 = g

∑
aiyihe

where e = H(m, (gi1)i∈A). This signature clearly shows which agents have
signed the message for P .

If the second distributed identification scheme is used, the signature on
m is a pair (g1, y) where

g1 = gyhe

and e = H(m, g1). This signature contains no information at all about the
identity of the agents, but each agent sees a signature on the form

(A, (gi1)i∈A, (yi)i∈A).

Hence, each agent in A knows and can prove who participated in the con-
struction of the signature.

Since both signature schemes are obtained by parallelizing a zero-knowledge
identification scheme, they seem to be secure against adaptive chosen mes-
sage attacks (see [GMR88]).

6.3 Applications to Identification Schemes 58

Organizations

By combining the key selection scheme presented in Section 4.3 with the
schemes presented above, one can construct a public key of an organization,
such that nobody knows the corresponding secret key, but any k members
can construct correct signatures with respect to this public key.

Chapter 7

Undeniable Signatures

Undeniable signatures were introduced in [CA90]. Briefly, an undeniable sig-
nature is a signature which cannot be verified without the help of the signer
(see [CA90] and [Cha91]). They are therefore less personal than ordinary
signatures in the sense that a signature cannot be related to the signer with-
out his help. On the other hand, the signer can only repudiate an alleged
signature by proving that it is incorrect.

In this section we first briefly present the undeniable signature scheme
proposed by Chaum in [Cha91], and in Section 7.2 and 7.3 a few extensions
(suggested in [CBDP91]) to this signature scheme are described.

7.1 An Undeniable Signature Scheme

The public key in the undeniable signature scheme is

KP = (p, q, g, h)

where h ∈ Gq, and the secret key, KS, is x = logg h. The signature on a
message m ∈ Gq is

z = mx.

Assumption SDL, says that for a random message, m, there is a negli-
gible probability that a polynomially bounded verifier can tell if a randomly
chosen z is the signature on m or not. This assumption also implies that it

7.1 An Undeniable Signature Scheme 60

is infeasible to forge a signature on a given message, m (except on a small
number of messages). Namely, any method for obtaining a signature on m
can be used to decide if a given z is the signature on m, by first finding the
forged signature z′ on m and then observing whether z equals z′.

However, an existential forgery (see [GMR88]) is possible by choosing
r ∈ ZZ∗

q at random and computing

m = gr and z = hr.

Furthermore, if it is known that zi is a signature on a message mi for i = 1, 2
it can be concluded that z1z2 is a signature on the message m1m2.

The signature scheme should therefore not be applied to a message di-
rectly, but rather to the hash value of the message. The one-way hash func-
tion H, should at least have the properties that:

1. It should be impossible to find m and r such that H(m) equals gr

(because of the existential forgery mentioned above).

2. H should spoil the homomorphism property.

The use of H also has the advantage that long messages can be signed effi-
ciently, if H(m) is easy to compute. For ease of notation the hash function is
omitted in the following, where it is shown how the signer can prove whether
a given message-signature pair is correct or not; the message m is implicitly
assumed to be the reset of applying H to the original message.

Verifying Signatures

The signer, who knows x, can prove that z is indeed us signature on m by
proving that logg h equals logm z as follows

protocol sdl

1. The verifier chooses a, b ∈ ZZ at random and computes the challenge
ch = magb, which is sent to the signer.

2. The signer chooses t ∈ ZZ∗
q at random and computes h1 = cht and

h2 = hx
1 .

The pair (h1, h2) is sent to the verifier.

7.1 An Undeniable Signature Scheme 61

3. The verifier sends the pair (a, b) to the signer.

4. If ch = magb the signer sends t to the verifier, and otherwise he stops
the execution.

5. The verifier accepts the proof if t �= 0 mod q and

h1 = (magb)t and h2 = (zahb)t.

Otherwise she rejects.

This protocol is slightly different from the one proposed in [Cha91]. As this
protocol will be used in other contexts later we present a proof of the follow-
ing theorem (the proof of the first three claims is from [BCDP91], and the
last property is proven in [Ped91a]).

Theorem 7.1
protocol sdl satisfies

1. If z is a correct signature on m, the verifier accepts.

2. If z is not a correct signature on m, the verifier accepts with probability
at most 1/q — even if the signer has unlimited computing power.

3. If z is a correct signature on m, the protocol is perfect zero-knowledge.

4. For any probabilistic polynomial time verifier V* there is a probabilis-
tic machine MV ∗ running in expected polynomial time on all inputs
(p, q, g, h, m, z), such that if logg h = logm z, the output of MV ∗ is
statistically indistinguishable from a transcript of an execution of the
protocol.

Proof
The first part is obvious. As for the second, observe that, if the signer is able
to send correct answers corresponding to two different pairs (a, b) and (a′, b′)
(where a �= a′), then logm z equals logg h. This follows from the fact that
since t �= 0 mod q and a− a′ �= 0 mod q,

(ma, gb)t = (ma′
gb′)t and (zahb)t = (za′

hb′)t

7.1 An Undeniable Signature Scheme 62

implies that

m = g(b′−b)(a−a′)−1

and z = h(b′−b)(a−a′)−1

.

In other words

logg m = logh z =
b′ − b

a− a′ �= 0

and thus

logg h = logm z.

Therefore, a cheating signer’s probability of success is no better than the
probability of finding a. But, for each value of a ∈ {0, . . . , q − 1}, there
is exactly one value of b giving the same challenger Thus, ch contains no
information about the value of a, and even a signer with unlimited computing
power can therefore do no better than trying to guess a.

The third part of the theorem is proven by describing a simulator for
the proof system. Let V ∗ be any probabilistic polynomial time verifier and
consider an execution of the protocol between P and V ∗. This execution will
be simulated as follows:

1. Get a challenge, ch, from V ∗.

2. Choose e and compute h′
1 = ge and h′

2 = he.

3. Get (a, b) from V ∗.
If ch �= magb: stop;

4. Rewind V ∗ to after the challenge is sent.
Choose t and compute h1 = (magb)t and h2 = (zahb)t.

5. Get (a′, b′) from V ∗.
If ch = ma′

gb′ : send t to the verifier and stop;
If ch �= ma′

gb′ : goto 4;

It is not hard to see that the simulator constructs a conversation having
the same distribution as conversations of real executions, if it stops in step

7.1 An Undeniable Signature Scheme 63

3. Furthermore, if the machine stops in step 5, the constructed values
ch, h1, h2, (a

′, b′) and t satisfy

ch = ma′
gb′

h1 = cht

h2 = hx
1

where a′, b′ and t are chosen with the same distribution as in real executions.
As usual the simulator can easily be modified so that it also outputs the
random bits used by V ∗ with the correct distribution.

Due to thy fact that thy simulator always produces pairs (h1, h2) with
the same distribution as the real signers the simulator runs in expected poly-
nomial time.

The above simulator is not sufficient to prove the last assertion because
h2 �= hx

1 in step 4, if z �= mx. Even though V ∗ can only discover this with
very small probability, it may be sufficient to spoil the expected polynomial
running time.

In order to solve this problem we insert a stopping procedure and replace
step 4 and 5 in the above simulator by the following

4. Alternately execute one round of procedure A and B below until one
of them stops:
Procedure A:

(a) Rewind V ∗ to after ch was sent

(b) Compute h1 = cht and h2 = (zahb)t.

(c) Get (a′, b′) from the verifier.
If ch = ma′

gb′ : send t to the verifier and stop;
If ch �= ma′

gb′ : goto (a);

Procedure B:

(a) count := 0.

(b) Rewind V ∗ to after ch was sent.

(c) Compute h1 = ge and h2 = he, where e ∈ ZZq is chosen at random.

(d) Get (a′, b′) from the verifier.

7.1 An Undeniable Signature Scheme 64

(e) ch = ma′
gb′ : count := count + 1.

(f) If count < |q|: goto (b);
Otherwise: stop.

Let P (ch) be the probability that V ∗ sends (a, b) such that ch = magb given
random pairs (h1, h2) satisfying hx

1 = h2.

To show that MV ∗ runs in expected polynomial time on all inputs it is
sufficient to show that the expected number of iterations of procedure B is
polynomial. As each round of B is run independently of previous rounds,
this number is

P (ch)
|q|

P (ch)
= |q|.

Next it will be shown that the output of the simulator is statistically in-
distinguishable from executions of the protocol whenever the input satisfies
logg h = logm z. It follows from the proof of property 3 that if MV ∗ stops in
step 3, or because procedure A stops before procedure B, then the produced
messages have the same distribution as the messages in real executions.

Finally there is the possibility, that procedure B stops before A, in which
case the output of the simulator differs from executions of the protocol. It
will now be shown that this happens with negligible probability.

We say that A has success in a round, if it stops. Similarly B has success
in one round if the verifier sends (a′, b′) such that ch = ma′

gb′ . A wins as
soon as it has one success, and B wins if it has |q| successes before A has had
any. Let the outcome of one execution of a round of A and B be (P = P (ch))

• α, if A has success. Prob[α] = P .

• β, if B has success and A has not. Prob[β] = P (1− P).

• discard, if neither A nor B has success.

By performing many (independent) experiments with outcomes and proba-
bilities as above and by removing all occurrences of discard we get a list of
α and β. The probability that β occurs at a given place in the list is (P > 0
as the protocol did not stop in step 3)

Pβ =
P (1− P)

P + P (1− P)
<

1

2
.

7.1 An Undeniable Signature Scheme 65

B only wins if the first |q| elements in the list are β:

Prob[B wins] = P
|q|
β < 2−|q|

Thus a simulated conversation has the same distribution as in a real execu-
tion of the proof system except with probability less than 2−|q|. �

The fourth property in Theorem 7.1 is not important for the application
to undeniable signatures, but it will be essential later,

Denying Signatures

Given a false message-signature pair, (m, z), the signer (knowing x = logg h)
can prove that z is not a signature on m by proving that logg h is not equal
to logm z. A zero-knowledge protocol for this is presented in [Cha91]. For
completeness this protocol is described below (“DDL” abbreviates different
discrete logarithms). Let as usual BC(m, r) denote a commitment to the
message m ∈ {0, 1}∗ using the random string r ∈ {0, 1}∗, and let k, t ∈ IN
be security parameters:

protocol ddl satisfies

1. The signer first computes (mx/z)i for i = 1, . . . , k and stores the re-
sults in a table.

Repeat the following t times:

(a) The verifier chooses s ∈ {0, . . . , k} and a ∈ ZZq at random and
computes ch1 = msga and ch2 = zsha.
The pair (ch1, ch2) is sent to the signer.

(b) Using the table created above the signer finds s′ such that (mx/z)s′ =
chx

1/ch2.
If no such s′ is found, the signer chooses s′ at random such that
0 ≤ s′ ≤ k.
The sigher chooses r ∈ {0, 1}∗ at random and sends BC(s′, r) to
the verifier.

(c) The verifier remembers the commitment and sends a to the signer.

7.2 Hidden Verifiers 66

(d) If ch1 = ms′ga and ch2 = zs′ha, then the signer opens the com-
mitment, and otherwise he stops the protocol.

(e) The verifier checks that the commitment received in step (b) con-
tains s. If this is the case she accepts the proof, and otherwise she
rejects.

2. The verifier accepts the proof if and only if she accepts in all t iterations.

In [CBDP91] it is proven that

Theorem 7.2
protocol ddl satisfies

1. If logm z �= logg h, then V accepts with probability 1.

2. If logm z = logg h, then no matter what an unlimited signer does, V
accepts with probability at most (ρ+ 1

k+1
)−t, where ρ is the probability

with which the signer can open a commitment to reveal more than one
value of s.

3. The protocol is perfectly or statistically (computationally) zero-know-
ledge if the commitment scheme is unconditionally (computationally)
secure for the signer.

This theorem is also true when the t iterations are executed in parallel.

7.2 Hidden Verifiers

The advantage of undeniable signatures over digital signatures is, that a
person should not be able to verify the validity of a signature without the
knowledge of the signer. In this section we first show how the verifier, by
computing his messages in a special way, can convince a group of people of
the outcome of the execution, and then it is demonstrated how the signer
can prevent this fraud. A person who executes a protocol with the signer
will be called a known verifier, whereas a person who tries to learn whether a
signature is correct or not without the knowledge of the signer will be called
a hidden verifier. Since a person who trusts the verifier, always believes what
the verifier tells him, we will only consider hidden verifiers who do not trust

7.2 Hidden Verifiers 67

the known verifier. As hidden verifiers constitute a problem for any (zero-
knowledge) protocol where non-transitivity is of importance, the proposed
countermeasure has many applications.

Now assume that there is a group of people of which only one (V) can
execute the verification or denial protocol with the signer. All members of
the group want to learn if a given signature is correct, but they do not trust
V (and perhaps not each other). Assume further that V has agreed (gets
paid) to help the other members to learn if the signature is correct.

It will be assumed that each hidden verifier can listen to the channel
that the signer and V use for exchanging messages during the execution of
the protocol (otherwise they have no guarantee that V does not simulate
an execution of the protocol alone). However, the signer and V may share
another channel so that they can send messages to each other without the
knowledge of the hidden verifiers.

Consider protocol sdl and note that if V knows a and b before the
signer has sent h1 and h2, then the hidden verifiers have no reason to trust
the proof, as V could have sent a and b to the signer. Each hidden verifier
should therefore require that the initial challenge be computed such that the
corresponding pair (a, b) cannot be found before h1 and h2 has been received.

Due to this observation it may be assumed that the initial challenge is
computed in a multi-party computation where the i’th verifier has a random
string as input and gets (ch, si) as secret output. Later on, a and b such that
ch = magb can be found from all the si’s. This way the hidden verifiers will
be convinced of the conversation between the signer and V .

The signer can avoid this problem by requiring that a and b are computed
as fk(s), where s is a string of random coins chosen by the verifier, and k is
a key to a member of a family of functions, which the signer sends initially.
The function fk should satisfy:

• For l ≥ 2 and for any function g, any multiparty computation of
fk(g(s1, . . . sl)) by l parties where si is a secret input of one of the
parties must take time at least 2T whereas a normal computation of
fk(s) can be done within time T . The function g expresses that the
verifiers can combine their secret inputs as they want to.

• All possible values for a and b have equal probability when the input
is chosen at random.

7.3 Non-Interactive Undeniable Signatures
with Preprocessing 68

If the signer requires that the challenge be sent within the time limit 3
2
T , he is

assured that the challenge is not computed using a multiparty computation,
and as a result only the person who has computed the challenge will be
convinced of the proof.

A similar technique can be used in the denial protocol from [Cha91] as it
also has a structure in which the verifier initially sends a random challenge.

7.3 Non-Interactive Undeniable Signatures

with Preprocessing

One obvious argument against undeniable signatures in some applications
(e.g. electronic mail) is that the verification and denial protocols are inher-
ently interactive, and that they therefore cannot be used in environments
where interaction is not readily available.

Here we present a solution to this problem, based on preprocessing : if
the signer and receiver have in advance executed an interactive protocol to
the receiver’s satisfaction, then the signer can later send messages, which the
receiver will accept as undeniably signed by the signer. The signer does not
need to know in the initial phase which messages he will send later.

We assume that the signer, in addition to the keys required for the un-
deniable signatures, has a pair of public/secret keys to an ordinary signature
system. For concreteness we assume this system is RSA and let RSA(m)
denote the signer’s RSA signature on the message, m. We also assume for
simplicity that the RSA system and the undeniable signature scheme have
the same message space. This gives the following solution:

preprocessing phase

1. The signer selects a random message x, and sends it to the receiver
together with an undeniable signature sign(x).

2. The signer and the receiver execute the verification protocol on input
(x, sign(x)). Both parties store (x, sign(x)) for later use.

At a later time, the signer can sign a message, m, undeniably by:

message send phase

7.3 Non-Interactive Undeniable Signatures
with Preprocessing 69

1. The signer sends m and s = RSA(m⊕ x) to the receiver.

2. The receiver gets (m, s) and checks that s is the correct RSA signature
on m⊕ x using his stored copy of x.

This signature is undeniable, because anyone can do the following: select s at
random, put x = m⊕RSA−1(s) and finally, by the properties of the original
undeniable scheme, produce a number r that looks just like the real unde-
niable signature sign(x). Hence, an entity which has not executed the veri-
fication protocol with the signer for the message/signature pair (x, sign(x))
has no reason to believe that the tuple (x, r, m, s) was really produced by the
signer.

On the other hand, if the signer really has signed x undeniably, then an
enemy who wants to forge a signature on the message, m, is faced with the
problem of breaking RSA by computing RSA(m⊕ x) from m and x. There
is of course the possibility of an existential forgery by choosing s at random
and putting m = RSA−1(s) ⊕ x. This may be solved by using a one-way
hash function on m. The use of a hash function also has the advantage of
making the choice of x independent of the length of m.

Thus the security of the non-interactive system follows from the security
of RSA and the origins undeniable scheme.

In place of RSA, any signature scheme can be used for which existen-
tial forgery, but no stronger form of forgery, is possible (e.g. the El Gamal
scheme) More concretely, we require that it is feasible to make random co-
herent pairs of messages and signatures, but inedible to produce a signature
from a given message. Thus, curiously, schemes that are normally regarded
as being more secure, such as the GMR-scheme (see [GMR88]), cannot be
used.

Chapter 8

Convertible Undeniable
Signatures

In addition to the properties of undeniable signatures described in the pre-
vious chapter, it could be usefd if there were some secret information, which
the signer could release at some point after signing, which would turn the
undeniable signatures into ordinary digital signatures. Then these signatures
cord be verified without the aid of the signer, but of course they should still
be difficult to forge. Such signatures will be called convertible undeniable
signatures.

In practice this means that the signer should have a public key KP and
two private keys KS1 and KS2. The first private key KS1 should never
be released; the signer uses it to produce signatures. The second private
key KS2 may be released to convert the undeniable signatures into ordinary
digital signatures. Thus the important property of a convertible undeniable
signature scheme compared to deniable signatures is, that it separates the
ability to sign from the ability to verify. Anyone knowing KP and KS2 can
verify signatures, but producing new signatures requires KS1.

In some applications of convertible undeniable signatures, one might
prefer to convert only selected undeniable signatures into digits signatures
(the signer may not wish everything he ever signed to be publicly verifiable).
When a scheme allows this, we will say that it is a selectively convertible
undeniable signature scheme.

In the first part of this chapter we define convertible undeniable signa-
tures formally and give a “theoretical” construction of such signatures. In

8.1 Theoretical Results 71

the second part a more practice scheme is presented.

Thy results in this chapter are also published in [BCDP91]. That paper
also contains some examples of applications of selectively convertible signa-
tures.

8.1 Theoretical Results

In this section, undeniable signatures are formally defined, and it is shown
that (convertible) undeniable signatures exist if and only if digital signatures
exist.

Formal Definitions

As we have seen, undeniable signatures differ from ordinary digital signa-
tures in that, given an undeniable signature, the verifier should be unable to
distinguish between valid and invalid signatures with any significant advan-
tage. In order to formalize the notion of undeniability, we need a polynomial
time simulator which — without access to the secret key — can produce fake
signatures that cannot be distinguished from valid signatures. This will be
formalized below.

We must also ensure that entering into the verification or denial protocols
does not help an enemy to forge signatures, or to distingush valid signatures
from invalid ones on messages that the signer is not willing to discuss. The
simplest way to do this is to demand that the protocols are (auxiliary input)
zero-knowledge. It is possible, but very complicated, to make the definitions
work without this property, but in all examples where we can prove security
of the protocols, they are in fact zero-knowledge. In this work the simpler
approach has been chosen in order to improve the readability (see [BCDP91]
for the more general definition).

In the following, we make use of a security parameter, k, that measures
the security of the scheme and the lengths of various bit strings. Thus “poly-
nomial”, “negligible” and “overwhelming” are always as functions of k in the
following.

An (undeniable) signature scheme consists of:

• A probabilistic polynomial time algorithm, A, which on input the se-

8.1 Theoretical Results 72

curity parameter k outputs a secret key, KS, and a matching public
key, KP , of length O(k) bits.

• A probabilistic polynomial time algorithm, Σ, which on input a mes-
sage, m, and a secret key, KS, outputs a signature Σ(m, KS). Messages
may have arbitrary polynomial length. The set of possible signatures
for a given message, m, with respect to a public key, KP , is denoted
KP (m). We demand that if m �= m′, then KP (m) ∩KP (m′) = ∅.

• A verification protocol, i.e. a zero-knowledge proof system with mes-
sage, m, public key KP and signature z as common input to the prover
and verifier. The protocol is a proof system for the language KP (m).

• A denial protocol, i.e. a zero-knowledge proof system with message m,
public key KP and invalid signature z as common input to prover and
verifier. In this protocol the signer proves that z /∈ KP (m).

Definition 8.1
A signature simulator is a probabilistic polynomial time algorithm, which
given a message, m, and a public key, KP , outputs a string Fake(m, KP)
(which is supposed to look like a real signature).

Definition 8.2
A signature distinguisher for a signature simulator is a probabilistic polyno-
mial time algorithm, D, that does the following:

1. Receives a public key, KP , as input.

2. Repeats the following a polynomial number of times:
Either output a message m and receive a valid signature on m;
or output a pair (m, z) and receive b ∈ {0, 1}, such that b equals 1 if
and only if z ∈ KP (m).

3. Outputs a final message m0 different from all messages output in step
2 and receives a string z0.

4. Outputs 0 or 1.

The final output of D can be thought of as D’s guess as to whether z0 is a
valid signature on m0 or is an output from the signature simulator.

8.1 Theoretical Results 73

This definition expresses the intuition that even if an enemy can get signa-
tures on messages of his choice, he still has no idea whether a given signature
is valid, unless he talks to the signer. More formally:

Definition 8.3
A signature scheme as described above is undeniable if there exists a signa-
ture simulator SS, such that for any signature distinguisher D for SS:

|pSS(k)− pΣ(k)|

is negligible, where pSS(k) and pΣ(k) are the probabilities that D outputs 1
when the z0 in step 3 above equals Fake(m0, KP), respectively Σ(m0, KS).
These probabilities are taken over the choices of the public key, the coin flips
of D, the choices of signatures (in step 2 of D) and the coin flips of SS,
respectively Σ.

For the scheme in Section 7.1 the signature simulator, on input m and the
public key KP , outputs a random z ∈ Gq. Assumption SDL is not sufficient
to guarantee that the scheme is undeniable with this simulator, since a sig-
nature distinguisher could ask for the signature z on a message m in step
2, output m0 = m2 in step 3 and output 1 in step 4 if and only if z0 = z2.
However, the hash function is assumed to prevent any signature distinguisher
from being able to exploit any dependencies between different messages and
their signatures.

We have said nothing so far about whether seeing executions of the
verification and denial protocols could help an enemy. Note, however, that we
have demanded that these protocols be zero-knowledge. Therefore, if there
exists a successful distinguisher which participates in some of these protocols
with the signer, there exists a successful distinguisher which satisfies the
above definition: we simply take the distinguisher we are given and replace
the interactions with the signer by simulations.

Finally, we need to express the property that an enemy cannot produce
valid signatures by himself. For this, we use a minor modification of the
concept of security against adaptive chosen message attacks (presented in
[GMR88]).

8.1 Theoretical Results 74

Definition 8.4
A signature enemy is a probabilistic polynomial time algorithm, E, that does
the following:

1. Receives a public key KP as input.

2. Repeats the following a polynomial number of times:
Outputs a polynomial number of messages, m1, . . . , mr, and receives
valid signatures, z1, . . . , zr, on these messages.

3. Outputs a final message m and a string z.

Intuitively, E tries to find a new message for which it can forge a signature.
We demand that this only happens with very small probability. More for-
mally:

Definition 8.5
A signature scheme as described above is secure against forgery if pE(k) is
negligible for any signature enemy E, where pE(k) is the probability that for
all i, m �= mi and z ∈ KP (m). The probability is over the choices of KP ,
the coin flips of E and the choices of signatures for each mi.

As before, it is easy to argue that seeing executions of the verification and
denial protocols does not help a signature enemy.

In the above definitions nothing has been said about convertible schemes,
but these only require the following small modifications. A convertible unde-
niable signature scheme is an undeniable signature scheme in which the key
generating algorithm, A, outputs a secret key KS on the form

KS = (KS1, KS2).

There must be a polynomial time algorithm, V , which on input

(KP, KS2, m, z)

outputs 1, if z ∈ KP (m) and outputs 0 otherwise.

In a selectively convertible scheme, the signature algorithm, Σ, produces
on input (m, KS) a signature z and a key Km. The set of possible keys

8.1 Theoretical Results 75

corresponding to m and z is denoted K(m, z). To verify a selectively con-
verted signature we also need a polynomial time algorithm, which on input
(KP, Km, m, z) outputs 1 if and only if z ∈ KP (m) and Km ∈ K(m, z).

The security of (selectively) convertible signatures (with respect to veri-
fication as well as forgery) can be defined almost as for undeniable signatures.
We just have to remember that the signature enemy may know KS2, and
that the signature distinguisher as well as the signature enemy may receive
Km ∈ K(m, z) for messages m of its choice and z ∈ KP (m).

Existence of convertible undeniable signature schemes

In this section, we discuss which assumptions are sufficient for the construc-
tion of (selectively) convertible signature schemes. If one makes the assump-
tion that a secure digital signature scheme exists, then we will see that it
is quite easy to design a convertible undeniable signature scheme. Thus, by
the result of [Rom90], it is sufficient to assume the existence of a one-way
function.

By a “secure digital signature scheme”, we mean one which is not ex-
istentially forgeable under an adaptive chosen plaintext attack, i.e., even if
an enemy can get signatures on messages of his choice, he cannot sign any
message that has not been signed by the signer (see [GMR88]).

Theorem 8.6
There exists a selectively convertible undeniable signature scheme which is
secure against forgery if and only if there exists a secure digital signature
scheme.

Proof
First, we remark that if a convertible undeniable signature scheme exists,
then we trivially have an ordinary signature scheme by releasing KS2 imme-
diately.

Conversely, to set up a digital signature schemes there is a probabilistic
polynomial time algorithm which on input a random string r, produces a
pair (P, S), where P is a public key, and S is the matching secret key. It is
intuitively obvious that the mapping from r to P must be a one-way function
if the scheme is secure. A formal proof can be derived by using the signature
scheme to build a secure identification protocol and using the result of [IL89].

8.1 Theoretical Results 76

Thus the existence of a secure digital signature scheme implies the ex-
istence of a one-way function, which by [GL89] and [ILL89] in turn implies
the existence of pseudorandom bit generators, and hence by [GGM84] the
existence of a pseudorandom function family. This is a parameterized family
of functions {fK}, where the parameter K can be thought of as a key. To a
polynomially bounded enemy who does not know the key, images fK(x) ap-
pear to be totally random values with no correlation to x, even if the enemy
gets to choose x.

In addition to pseudorandom functions we will need a commitment
scheme. Let BC(B, R) denote a commitment to B ∈ {0, 1}∗ using the
random string R ∈ {0, 1}∗, and assume that the committer can open the
commitment by revealing R.

Commitments of this form are only known to east assuming the existence
of 1—1 oneuway functions. However, for the moment we will assume that
we have such a commitment scheme to our disposal, and later we show how
to get rid of the 1—1 assumption.

Let P and S be the public and secret keys for the signature scheme we
are given, and let S(M) denote the signature on M using the secret key, S.
The public key in the undeniably system is

KP = (P, BC(K, R)),

where K is a key to the pseudorandum function family. The private key
KS = (KS1, KS2) is given by

KS1 = S and KS2 = R.

Let M be the message space for the given signature system, and assume
that fk maps messages in M to random bit-strings. Then the undeniable
signature on M ∈M has the following form:

sign(M) = Bc(S(M), fK(M)).

The protocols for verifying and denying signatures can be constructed
from a circuit that works as illustrated in figure 8.1. Using R, it will open
the commitment to K, from which it computes fK(M). With this values it
opens the commitment to S(M), and finally it checks this signature on M
using the public key P . The circuit gives three bits b1, b2 and b3 as output.

8.1 Theoretical Results 77

Figure 8.1: Circuit for verifying or denying signatures.

They are defined to be 1, if the opening of the two commitments and the
signature check, respectively, was successful.

By the general protocols of [BCC88] or [IY88], the signer can now con-
vince anyone of the value of any boolean function of b1, b2, b3 in zero-
knowledge — in particular without revealing R and K. If he wants to verify
a signature, he convinces the verifier that b1 ∧ b2 ∧ b3 = 1; if he wants to
deny a signature, he convinces the verifier that b1∧ ((¬b2)∨ (¬b3)) = 1. The
scheme is convertible, since the release of R enables the computation of K,
and therefore all commitments to signatures can be opened. It is also se-
lectively convertibles since for a signed message M , one can release fK(M).
This allows computation of S(M) from sign(M), but by the properties of
pseudorandom functions it does not help in computing any other function
values.

The scheme is secure against forgery, because, since the signer chooses
R and K independently of S, any forgery of the undeniable signatures could
be used to forge signatures in the origins signature scheme.

To show that the scheme is undeniable we construct a signature simula-
tor which simply makes a bit commitment to a random string of the correct

8.1 Theoretical Results 78

length.

We now argue that this signature simulator works. The reader should
have no troubles filling in the details using the definitions of pseudorandom
function families arid bit commitment schemes. The signature distinguisher,
D, does the following (see Definition 8.2):

1. Receive the public key, KP = (P, BC(K, R));

2. Repeat the following a polynomial number of times:
Output a message m ∈ M and get a signature BC(S(m), fK(m)); or
output a pair (m, σ) and get b ∈ {0, 1} such that b = 1 if and only if σ
is a correct signature on m.

3. Output a message m0 and get σ0 where σ0 is either on the form BC(S(m0),
fK(m0)) or BC(r0, r1) where r0, r1 ∈ {0, 1}∗, |r0| = |S(m0)| and |r1| =
|fk(m0)|.

4. Output 0 or 1.

Let PΣ be the probability that D outputs 1 if σ0 is a signature on m0 and let
PSS be the probability that D outputs 1 if σ0 is a random commitment to a
random string. We want to show that |PΣ − PSS| is negligible. Consider the
following two experiments:

1. Replace BC(K, R) by BC(R0, R1) in the public key, where R0 and R1

are randomly chosen in {0, 1}∗ of the appropriate length, and run the
distinguisher as described above.

2. Replace furthermore fK(m) by a random string, in all signatures (in
step 2 and 3).

In the following we make use of the fact that the key K, the commitment
scheme BC and the signature functions (S, P) are chosen independently of
each other.

Let P ′
Σ(P ′

SS) and P ′′
Σ(P ′′

SS) be the probabilities with which D outputs 1
in the four ales corresponding to the two experiments and the two choices of
σ0 in step 3 of D.

Now |PΣ − P ′
Σ| is negligible, because D and the signer have otherwise

found a messages K, such that they can distinguish a random commitment
to K from random commitments. Similarly is |PSS − P ′

SS| negligible.

8.1 Theoretical Results 79

If |P ′
Σ − P ′′

Σ| is non-negligible then D and the signer can distinguish
random values from values of the pseudorandom function. This is a contra-
diction — even if the signer has selectively converted some of the signatures.
For the same reason is |P ′

SS − P ′′
SS| negligible.

Finally is |P ′′
Σ−P ′′

SS| negligible, because D and the signer have otherwise
found a message, S(m), such that they can distinguish random commitments
to this message from random commitments to random strings of the same
length. Thus

|PΣ − PSS| = |PΣ − (P ′
Σ − P ′

Σ)− (P ′′
Σ − P ′′

Σ)−
(P ′′

SS − P ′′
SS)− (P ′

SS − P ′
SS)− PSS|

≤ |PΣ − P ′
Σ|+ |P ′

Σ − P ′′
Σ|+

|P ′′
Σ − P ′′

SS|+ |P ′′
SS − P ′

SS|+ |P ′
SS − PSS|

and the last expression is negligible.

Finally we address the problem of basing the scheme on any one-way
function. By the result of Naor, [Nao90], one can build bit commitments
from any one-way function, but this requires interaction: the verifier sends
a random string RV and the signer/prover responds with the commitment.
The randomness of RV is necessary to ensure that the prover is actually com-
mitted, but it does not affect the secrecy of the bits committed to. We will
use this scheme for the commitment to K; for this commitment, RV can be
supplied by a trusted key-center, which will usually have to exist to guaran-
tee the authenticity of the public keys. But any mutually trusted source of
random bits (such as a multiparty coinflipping protocol) would suffice here.
Once K is committed to, we do not need Naor’s scheme any more. For the
commitments to signatures, we can use the “hard-core” bits of the one-way
function (see [GL89]), because the random input is now determined by K.

�

The following corollary shows that the conditions needed for the con-
struction of an undeniable signature scheme are no we er than the necessary
conditions for the construction of a convertible undeniable signature scheme.

Corollary 8.7
There exists a secure undeniable signature system if and only if there exists
a one-way function.

8.2 A Practical Solution 80

Proof sketch
If undeniable signatures exist, one can prove the existence of a one-way func-
tion in the same way as in the proof of Theorem 8.6.

The converse follows from the previous theorem and the result of [Rom90]
that secure digital signatures exist if one-way functions exist. �

Independently, this corollary was proven earlier by Micali ([Mic90]).

8.2 A Practical Solution

In Section 8.1 it was shown how to construct a selectively convertible un-
deniable signature scheme, based on any one-way function. This solution is
very far from being practical, however. In this section we show how the El
Gamal signature scheme [EG85] can be changed into a practical convertible
undeniable signature scheme.

It does not appear to be possible to get a convertible scheme by a more
straightforward generalization of the scheme from Section 7.1. For examples
the most obvious generalization is to use a composite modulus but then it
becomes difficult to tell whether or not a given message represents an element
of the subgroup we are using.

El Gamal Signatures

The El Gamal signature scheme may be applied in any group where discrete
log is a hard problem. This includes the group Gq introduced in Section 2.
In this group, the El Gamal scheme can be described as follows:

The private key is a number x between 1 and q and the public key is
h = gx. The signature on a message m ∈ ZZ∗

q is a pair (r, s) satisfying

gm = hrrs.

This signature is constructed by choosing k ∈ ZZ∗
q at random and computing

r and s by

r = gk

8.2 A Practical Solution 81

and

s = k−1(m− xr) mod q.

Here r is considered an element of ZZq.

The Convertible Scheme

Using the El Gamal signature scheme, we can construct an undeniable sig-
nature scheme as follows, The private keys are

KS1 = x and KS2 = y, 1 < x, y < q

and the public key is

KP = (p, q, g, h1, h2), where h1 = gx and h2 = gy.

When the signer makes public KP = (p, q, g, h1, h2), the receiver, which
could be a key center or a user, should verify that g, h1 and h2 are in Gq.

The signature on the message m ∈ ZZ∗
q is

sign(m) = (gt, r, s),

where t ∈ ZZ∗
q is chosen at random, and (r, s) is the El Gamal signature on

gttym mod q (in this product the binary representation of gt is considered to
be a representation of an element in ZZq).

In the El Gamal scheme, it is possible for a forger to construct a signature
(r′, s′) on a message m′. It is very unlikely that m′ is meaningful but this
attack implies that the El Gamal scheme must be used together with a hash
function. The new scheme also requires a hash function, but for simplicity
of notation, we will not mention it when describing the scheme.

The triple (T, r, s) is a legal signature on a message m, if and only if

(T Tm)y = hr
1r

s

(whenever T is in the exponent, it is considered to be an element of ZZq).
Throughout this section, we will use v to denote hr

1r
s and w to denote T Tm.

Thus verifying a signature (T, r, s) on m is equivalent to deciding if logw v
equals logg h2.

8.2 A Practical Solution 82

Therefore the signer can prove that (T, r, s) is a legal signature on the
message m as follows: (S is the signer and V the verifier)

protocol verify signature

1. S and V compute w = T Tm and v = hr
1r

s.

2. S proves that logw v equals logg h2 using protocol sdl.

3. V accepts the signature if and only if she accepts the proof.

Proposition 8.8
If (T, r, s) is a legal signature on m, the following hold

1. The verifier always accepts the verification.

2. protocol verify signature is zero-knowledge.

If (T, r, s) is a false signature, the verifier accepts with negligible probability
(in |q|).

Proof
Follows from Theorem 7.1. �

A signature is denied as follows:

protocol deny signature

1. S and V both compute w = T Tm and v = hr
1r

s.

2. S proves that logg h2 �= logw v using a zero-knowledge proof system.

3. V accepts the denial if and only if she accepts the proof.

Proposition 8.9
If (T, r, s) is a false signature on m, the following hold:

1. The verifier always accepts the denial.

2. protocol deny signature is zero-knowledge.

8.2 A Practical Solution 83

If (T, r, s) is a legal signature on m, the verifier will accept the denial with
negligible probability (in |q|) no matter what an unlimited signer does.

Proof
By definition of the protocol. �

Conversion of all signatures

An undeniable signature is converted to an ordinary signature by releaseing
KS2. Knowing KS2 = y and KP , everybody can verify a signature (T, r, s)
on the message m by computing (T Tm)y and verifying that it equals hr

1r
s.

Thus when y is released all previous and future signatures are El Gamal
signatures on messages on a special form.

Selective conversion

Knowing t such that T = gt, anyone can check that (T, r, s) is a signature on
m by verifying that

T = gt and (hTm
2)t = hr

1r
s.

Therefore, a single signature can be converted to an ordinary digital signa-
ture by releasing t. This method of converting signatures requires that the
signer remembers the t used to construct the signature on m. This is most
conveniently done by choosing a key, K, to a pseudorandom function fK (see
[GGM84]) and then computing t as fK(m) (see also the proof of Theorem
8.6). The properties of families of pseudorandom functions guarantee that,
given polynomially many pairs (mi, fK(mi)), it is infeasible to find fK(m)
for a message m �= mi. Conversion of any polynomial number of signatures
can therefore not affect the undeniability of other signatures.

Security

Although we have not been able to reduce security of this scheme to any
standard intractability assumption, there is strong intuitive evidence that
the scheme does in fact have the desired properties.

We will begin by discussing the possibility of creating false signatures.
Since the verification and denial protocols are zero-knowledge, the strongest

8.2 A Practical Solution 84

attack in this context is the chosen message attack, in which the enemy can
ask for signatures on messages of his choice, and later tries to “sign” a new
message. For our scheme, this means that the enemy can get triples of the
form (T, r, s), such that

T Tym = hr
1r

s,

where m is chosen by the enemy, and T is chosen by the signer. In the
followings we make the worst case assumption that the enemy knows t, the
discrete logarithm of T , and y. This means that the enemy gets El Gamal
signatures on numbers of the form Ttmy.

The only known consequence for the El Gamal scheme under this at-
tack is that the enemy care construct new “signed” messages from the ones
he is given (see [EG85]), but these new messages result from applying a
hard-to-invert transformation to the known messages, and therefore they
cannot be controlled easily. It is also possible to construct “signed” —
but still hard to control — messages from scratch. They have the form
m = gBhC

1 BC−1 mod q, where B and C can be arbitrary integers. The con-
struction that uses already signed messages is similar, but more complicated.
In the El Garnal scheme, as in ours, this weakness is solved by applying a
one-way hash function to the messages before signing.

Now suppose that the enemy is somehow able to create a signature
(T, r, s) on a message m. There are two cases:

1. If he also knows t, such that T = gt, he has treated an El Gamal
signature on Ttmy. So either he has found a completely new way to
break the El Gamal system, or he has found a way to write the result of
the hard-to-invert transformation mentioned above in the form Ttmy.
We conjecture that this is a hard problem: m is in fact shorthand for
a one-way hashed image of the actual message, the mapping f(t) = gtt
can reasonably be assumed to be one-way, and y is a constants Thus
none of the factors in (Tt)my can be easily controlled by the enemy.

2. Thy only remaining possibility is that the enemy can find values satisfy-
ing (T T)my = hr

1r
s without knowing the discrete logarithm of T . This

problem could only be easier than case 1, if T is computed in some
clever way from signatures the enemy got earlier from the signer. As
discussed above, these signatures are equivalent to El Gamal signatures
on messages of a special form. But these messages cannot be controlled

8.2 A Practical Solution 85

by the enemy, since they all involve a factor of the form tgt where t
is chosen independently by the signer. Furthermore, it does not seem
to be any advantage to the enemy that the signed messages contain a
product tgt, because he can construct signatures on such messages by
himself. Hence it is reasonable to assume that these signed messages
will be of no more use to the enemy than the ones he can construct
himself from scratch. These observations suggest that this case is not
easier than case 1.

We now turn to the problem of verifying signatures without the aid of the
signer. We have to come up with a signature simulator and claim that

Fake(m, KP) = (T, r, s),

where T , r, and s are chosen at random, will do. Remember that if KP =
(p, q, g, h1, h2), then the signer also chooses T and r at random, and then
computes s from T , r, logg(T), logg(r) and the secret key.

Any signature distinguisher is at some point going to output a message m
and receive a string (T, r, s), which is either a correct signature or produced by
the signature simulator. The distinguisher then has to determine if T Tmy =
hr

1r
s. The natural way to verify an equation like this is to compute each

side and compare. But if the distinguisher can compute the left side, it can
also compute gty = (T Tmy)(Tm)−1

. This computation of gty from h2 = gy and
T = gt contradicts assumption DH.

The definition of a signature distinguisher glows, however, that the dis-
tinguisher receives signatures on messages of its choice. Thus, the distin-
guisher may know a number of void signatures (Ti, ri, si) on messages mi.
In the worst case the distinguisher also knows ti = loggTi. Hence we have a
situation where (gtiy, ti, g

y) is known for a number of independently chosen
ti’s, and the signature distinguisher is now trying to guess the value of gty for
a t which is independent of all the ti’s. For each i, (gtiy, ti, g

y) could easily
be generated with the same distribution by the distinguisher itself. The only
additional information, it has, is that each gtiy can be expressed in a special
form, namely as (hri

1 rsi
i)(Timi)

−1
. Since this expression involves the indepen-

dently chosen ri’s, we conjecture that this extra information does not help
the signature distinguisher.

But if the distinguisher is unable to compute gty, then he is left with
the problem that is also the basis of the scheme from Section 7.1: trying to

8.2 A Practical Solution 86

decide whether logwv equals loggh2, where it is reasonable to assume that v
and w are random elements. According to assumption SDL this is a hard
problem.

Generalizations

This method of constructing undeniable signatures can be used in any group.
However, if the group in question is not of prime order, one has to apply the
more general protocol presented in [CEG87] for proving equality between
logarithms. The reason for this is that the proof of Theorem 7.1 does not
work, if w (which the signer chooses) generates a small subgroup.

Chapter 9

Agents in Undeniable Signature
Schemes

In almost all applications of undeniable signatures that one can imagine, it
might be a problem that only the signer can verify the signatures, because
this requires that he can always be reached. Since an udeniable signature
does not prove anything in itself, it is very reasonable that a receiver of a
signature demands that either the signer or an agent authorized by the signer
is always willing to verify signatures. Such an agent can also be a big help
to the signer, since a person signing many messages quite rapidly can be
overburdened verifying signatures.

With convertible undeniable signatures it is possible for the signer to
authorize an agent who can verify all signatures (by giving him KS2), and if
the signatures are selectively convertible, agents can be authorized to verify
single signatures. However, this requires that the signer trusts the agents
completely.

If the signer does not (want to) trust single persons, he may want to au-
thorize n agents such that verification requires at lest k of these to cooperate.
This chapter shows how distributed proofs can be used to achieve this goal
for the selectively convertible scheme presented in Section 8.2. The results
presented in this chapter are also described in [Ped91a].

9.1 Distributed Verification 88

9.1 Distributed Verification

Consider the case where the signer, S, has signed the message, m, using the
random exponent, t. Thus sign(m) = (T, r, s) where T = gt and (r, s) is
the El Gamal signature on the product Ttzm modulo q. S distributes the
ability to verify this signature to n agents (P1, P2, . . . , Pn) by distributing t.
As T = gt is part of the signature and therefore not secret, the secret sharing
scheme from Section 4.1 can be used (the common input is T and the public
key):

protocol distribute single signature

1. S distributes t using protocol distribute in Section 4.1. Thus Pi

gets the share ti = f(i), where f is a polynomial over ZZq of degree
k − 1 such that f(0) = t.

2. Each agent Pi verifies his share as described in Section 4.1.

3. S sends H(m, r, s) to each agent, where H is a collision-free hash func-
tion.

After the execution of this protocol each Pi has a secret share ti with corre-
sponding public information τi = gti In addition to these values each agent
has a hash value of the signature and the signed message, which is used to
decide if a signature should be verified.

When a person, V , asks k agents (say P1, P2, . . . , Pk) to verify a signa-
ture (T ′, r′, s′) on a message m′, the agents first have to make sure that they
are able to verify it and then decide if the signature is correct. Let a1, . . . , ak

be elements in ZZq such that

k∑
i=1

tiai = t.

As mentioned in Section 4.1, each ai can be computed from the identities of
the k agents.

protocol decide

9.1 Distributed Verification 89

1. V and each Pi verify that T ′ =
∏k

1 τai
i .

If this is not the case, the agents can neither verify nor deny the signa-
ture.

2. Each Pi verifies that the signer has sent H(m′, r′, s′). If this is true,
the agents agree to verify the signature, and otherwise they tell V that
they are not able to verify it.

The result of protocol decide is not a proof that the signature is cor-
rect/false, because the decision is based on values that anyone could have
produced. P1, P2, . . . , Pk can verify a signature by executing (now T ′ = T)

protocol distributed verification

1. Pi and V compute w = hTm′
2 and v = hr′

1 r′s
′
.

2. P1, P2, . . . , Pk prove that logw(v) = logg(T) using protocol dis-
tributed sdl below.

3. V accepts the signature if and only if she accepts the proof.

It is sufficient to construct a secure distributed proof for the language SDL.
By a slight modification of protocol sdl this can by done as follows:

protocol distributed sdl

1. The verifier chooses a, b ∈ ZZq at random, computes ch = wagb and
broadcasts ch to the k agents.

2. Upon receiving ch ∈ Gq, each agent, Pi, chooses ri ∈ ZZ at random and
computes hi1 = chri and hi2 = hti

i1.
Pi broadcasts the pair (hi1, hi2).

3. When the verifier has received k pairs of elements in Gq she broadcasts
(a, b).

4. If ch = wagb, Pi broadcasts ri.
Otherwise Pi broadcasts the message “stop” and stops the execution.

9.1 Distributed Verification 90

5. The verifier accepts the proof if

k∏
i=1

hi1 = ch
∑k

1 ri and
k∏

i=1

h
ai/ri

i2 = vaT a.

Otherwise the proof is rejected.

In the following it will be shown, that this is a secure distributed proof. An
honest agent reveals wti in an execution of the protocol, as it can be com-
puted from chriti when ri is known. The following theorem shows, that an
honest agent does not reveal more than this, and it is shown that the agents
cannot verify an invalid signature.

Theorem 9.1
protocol distributed sdl satisfies

1. If v = wt, the verifier accepts with probability 1.

2. If v �= wt, the verifier accepts with probability at most 1
q

— even if the
agents have unlimited computing power.

3. For any probabilistic polynomial time verifier V ∗ and for any set D ⊆
{1, . . . , k} of dishonest agents there is a machine MV ∗,D running in
expected polynomial time such that MV ∗,D on input

• the common input (p, q, g, T, w, v), where logg(T) = logw(v);

• the auxiliary input of V ∗ (auxV ∗);

• the auxiliary input of the dishonest agents ((aux i)i∈D); and

• (wti)i∈H where H = {1, . . . , k} \D

outputs a conversation having the same distribution as in real execu-
tions of the protocol.

9.1 Distributed Verification 91

Proof
If v = wt and the provers follow the protocol then

k∏
i=1

h
ai/ri

i2 =
k∏

i=1

(chriti)ai/ri

=
k∏

i=1

chtiai

= cht

= vaT b.

and therefore the verifier accepts.

If, on the other, hand there exists k agents, who can convince the ver-
ifier about a false claim with probability greater than q−1, then there is a
strategy for the prover in protocol sdl, which makes the verifier accept
with probability greater than q−1. This contradicts Theorem 7.1.

The third property can be proven by a standard simulation. Let V ∗ and
D be given and let H = {1, . . . , k} \D be the set of honest agents. MV ∗,D

works as follows

1. V ∗ produces a challenge ch.

2. For the honest provers compute hi1 = gei and hi2 = τ ei
i where ei ∈ ZZq

is a random element.
For the dishonest provers (hi1, hi2) is computed as in the protocol.

3. Get (a, b) from the verifier.
If ch �= wagb stop.

4. Rewind V ∗ and the provers in D to after ch was sent.

5. For i ∈ H compute hi1 = chri and hi2 = ((wti)aτ b
i)

ri .
The dishonest provers compute (hi1, hi2) as usual.

6. Get (a′, b′) from the verifier.
If ch = wa′

gb′ : give ri to the verifier for i ∈ H, and for i ∈ D compute
ri as usual. Then stop.
If ch �= wa′

gb′ : goto (4).

9.1 Distributed Verification 92

This machine runs in expected polynomial time, and its output has the
same distribution as the conversations of a real execution, because the pairs
(hi1, hi2) always have the same distribution as in real executions. �

We now want to show that protocol distributed sdl is a secure
distributed proof of membership according to Definition 6.4. Thus we have
to provide two simulators, one for the distribution of t and one for the actual
executions of the proof.

The second simulator is almost given from the proof of Theorem 9.1, but
we have to provide the necessary input to this simulator (in particular wti).
In order to do this we shall use the fact that the first simulator is allowed to
produce an auxiliary output, distinf .

Theorem 9.2
protocol distributed sdl is a secure distributed proof with respect to
the secret sharing scheme in Section 4.1.

Proof
Let V ∗ be a probabilistic polynomial time verifier, and let D ⊂ {1, . . . , n}
be a set of dishonest agents and assume that #D < k.

Let H = {1, 2, . . . , n} \D be the set of honest agents. The simulator of
the distribution phase (Mdist) is based on the same principles as the proof of
Theorem 4.3 and works as follows on input (ti)i∈D:

1. Choose a subset H ′ ⊆ H, such that #(H ′ ∪D) = k − 1.
Choose random shares ti ∈ ZZq for i ∈ H ′ and let τi = gti .

2. As in the proof of Theorem 4.3 compute gfi for j = 0, . . . , k− 1, where
the polynomial

f(x) = f0 + · · ·+ fk−1x
k−1

satisfies

f(0) = t

f(i) = ti for i ∈ H ′ ∪D

Compute for i ∈ H \H ′

τi = gf(i) =
k−1∏
j=0

(gfi)ij

9.2 Generalizations 93

and let ti = f(i) (ti is not known for i ∈ H \H ′).

3. Let proof = (gf1 , gf2 , . . . , gfk−1).
Output conv = (proof , (ti)i∈D) and distin f = (ti)i∈H′∪D.

proof constructed above has the same distribution as the message broad-
casted by the dealer.

The simulator of an execution of the proof (MProof) has as input:

• the common input (p, q, g, T, w, v), where logg(T) = logw(v);

• the auxiliary input of V ∗ (auxV ∗);

• the auxiliary input of the dishonest agents ((aux i)i∈D); and

• distin f

However, from distin f and v = wt it is easy to construct wti for all i ∈
{1, 2, . . . , n} (again as in the proof of Theorem 4.3) and when these values
are known, the simulator from the proof of Theorem 9.1 can be used. �

As the simulator in the proof of Theorem 9.1 also works if many proofs
are executed in parallel we get the following

Corollary 9.3
protocol distributed sdl is strongly secure.

In particular this implies that the verifier cannot use a transcript of an
execution of protocol distributed verification as a proof of the va-
lidity of a signature — this is true even if the verifier executes the verification
protocol many times simultaneously (with different honest agents).

9.2 Generalizations

The signer can, by distributing y, authorize agents, that are able to verify
all signatures using protocol distributed sdl above.

This facility, however, requires that the agents are able to decide whether
a given triple (T, r, s) is a signature on m or not. They can do this by
performing a multi-party computation, whose output says if the signature is

9.3 Distributed Denial 94

valid or not. In this case one must be careful to prevent that a dishonest
agent convinces the verifier of the result of this computation.

Alternatively, the signer cord give the agents a list of hash values of
signatures and then the agents make their decision bred on this list. This
requires, that the signer updates this list every time a new message is signed.

The techniques suggested in this section can also be applied with the
undeniable signature scheme from Section 7.1, but in this case, agents who
can verify signatures can also sign new messages.

9.3 Distributed Denial

This section investigates the possibility of using the agents to deny signatures.
It can be argued that this facility is not necessary, since denial of signatures
is not expected to take place as often as verification. Furthermore, it is likely,
that denial will take place in court, and in that case it is more reasonable
that the signer or a single agent, authorized by the signer, is present. In
spite of this, the following suggests how a number of agents can prove that
an alleged signature is false.

Using the techniques described below, agents sharing y can deny any
(false) signature, but as discussed in Section 9.2 this requires that they are
able to decide whether an arbitrary signature is correct or not.

Now suppose (T, r, s) is a legal signature on m which has been distributed
to P1, . . . , Pn as in protocol distributed single signature. Thus
t = logg T has been distributed to the n agents, and at some point k of these
are asked to prove that a given triple (T ′, r′, s′) is not a signature on m′,
where T equals T ′.

As the signer only uses T in one signature (otherwise the signatures may
not be undeniable), the agents know that the signature is invalid if T ′ = T
and the signer did not send H(m′, r′, s′) when the correct signature was dis-
tributed (see Section 9.1). P1, P2, . . . , Pk can therefore prove that (T, r, s) is
not a signature on m as follows:

protocol distributed denial

1. Pi and V compute w = hTm
2 and v = yrrs.

2. P1, P2, . . . , Pk proves that logw(v) �= logg(T) as shown in protocol

9.3 Distributed Denial 95

distributed ddl below.

3. V accepts that the signature is false if and only if she accepts the proof.

It has not been possible to change protocol ddl into an efficient and
secure distributed proof. The problem is that this protocol requires that the
prover determine s (see Section 7.1), but in a distributed proof this means
that a (dishonest) agent, who stops after this has been determined, can
obtain extra knowledge. Instead we propose the following protocol, which
intuitively seems to be secure, although we cannot prove it formally.

Let as usual BC(B, R) denote a commitment to B ∈ {0, 1}∗ using the
random string R ∈ {0, 1}∗. The keys to the commitment scheme should be
supplied by a trusted (key authentication) center. Any k agents can prove in-
equality of discrete logarithms as follows (all participants get p, q, g, T, (τ1, . . . ,
τk) and (v, w) as common input, and the i’th prover gets ti = logg τi as aux-
iliary input):

protocol distributed ddl

1. Each Pi chooses ei ∈ ZZq and ri ∈ {0, 1}∗ and computes w1i = wei and
βi = BC(w1i, ri).
The commitment βi is broadcasted.

2. When all k agents have broadcasted a commitment, Pi opens his com-
mitment by broadcasting ri.

3. When all k agents have opened their commitments, Pi and the verifier
find all the w1i’s and compute w1 =

∏k
1 w1i.

If w1 = 1 the protocol is stopped.
Compute v1i = vei and broadcast v1i.

4. For i = 1, 2, . . . , k : Pi proves that logv v1i = logw w1i by executing
protocol sdl with the verifier.

5. If the verifier rejects one of these proofs, the protocol is stopped.
Otherwise all participants compute v1 =

∏k
1 v1i.

6. Each Pi computes w2i = wti
1 and broadcasts w2i.

7. For i = 1, 2, . . . , k: Pi proves that logg τi = logw1
w2i by executing

protocol sdl with the verifier.

9.3 Distributed Denial 96

8. If the verifier rejects one of these proofs, the protocol is stopped.

9. The verifier computes w2 =
∏k

1 wai
1i , and accepts the proof if and only

if w2 �= v1.

We first show that the protocol is a proof system.

Theorem 9.4
protocol distributed ddl satisfies

1. If logw(v) �= logg(T) then V accepts with probability 1− 1
q
, if the agents

follow the protocol.

2. If logw(v) = logg(T) then no matter what k agents with unlimited
computing power do, V accepts with probability at most 1

q
.

Proof
For e �= 0 mod q

w2 = v1 ⇔ ve = (we)x

⇔ v = wt.

Therefore the first claim follows from the fact that V accepts the proof if
w1 �= 1 which happens with probability 1− 1

q
.

The second claim follows from the fact that a cheater in protocol sdl
will succeed with probability at most 1

q
. �

protocol distributed ddl is probably not auxiliary input zero-
knowledge, because if the verifier does not cooperate with any provers, each
Pi reveals

(v1, w1, w2i) = (ve, we, wti
1),

which presumably cannot be constructed by a polynomial time machines
which gets v and w as input (here e =

∑k
1 ei, is unknown).

Despite this the following shows that it is very hard for the verifier to
obtain any advantage by executing the protocol.

9.3 Distributed Denial 97

First notice, that the verifier cannot choose v and w freely, but they
must be chosen on the form

v = yrrs and w = h
TH(m)
2

where H is a hash-function. Under the assumption that the image of m
under H looks like a random string of bits, w looks like a random element
of Gq. Furthermore, if the El Gamal scheme is secure, then v is the image
of r and s under a one-way function, and thus it is hard for the verifier to
control v and w.

As it also seems to be very hard to exploit the knowledge of r, s, m and
T , the only possibility for a cheating verifier is to execute the protocol several
times with the same v and/or w (perhaps with different sets of agents). But
due to the fact that w1 is chosen (almost) at random in each executions it
seems hard to obtain any information by comparing different executions of
the protocol.

Consider the following attempt to simulate an honest prover in a single
execution of protocol distributed ddl

v1i = vei

w1i = wei

w2i : a random element of Gq

where ei is chosen at random in ZZq. This simulation does not work against
a verifier who (for example) knows a and b such that

v = τ b
i and w = ga

because if logv v1 = logw w1 = e then w2i must satisfy (remember τi = gti)

w
b/a
2i = w

tib/a
1 = gtibe = ve = v1

but this is very unlikely to be true for a randomly chosen w2i. However, as
noted above it is very hard for the verifier to choose such a pair (v, w) in
protocol distributed denial.

We now argue that, if the verifier and the dishonest agents cannot choose
v and w better than at random, then the protocol can be simulated, and by
the above remarks it can therefore be considered a secure distributed proof.

9.3 Distributed Denial 98

Consider an execution of the protocol between P1, P2, . . . , Pk and a veri-
fier V ∗, and assume that D ⊂ {P1, P2, . . . , Pk} is the set of dishonest provers.
Let ci denote the common input to the protocol (omitting p, q and g). Then
ci is on the form

(T, τ1, . . . , τk, v, w).

where

T =
k∏

i=1

τai
i and logw v �= logg T.

A polynomially bounded machine, MV ∗,D, with access to the dishonest provers
and V ∗ simulates an honest prover as following on input ci:

1. Choose ei at random and compute βi.

2. Open βi and when all k values of w1j are known, compute w1 as their
product.

3. Compute v1i = vei and when all k values of v1i are known, prove that
logv (v1i) is equal to logw (w1i). Finally compute v1 =

∏k
j=1 v1j.

4. Choose w2i at randome

5. Simulate the “proof” that logw1
(w2i) = logg (τi).

In step 5 the simulator is going to simulate a “proof” of a false claim as it
is very unlikely that w2i equals wti

1 . Theorem 7.1 shows that it is possible to
simulate the proof system for equality of discrete logarithms in such a way
that the simulator always stops in expected polynomial time, and thus the
above simulator runs in expected polynomial time.

MV ∗,D generates (v1i, w1i) with the same distribution as executions of
the protocole The only difference between a simulated conversation and a
transcript of a real execution of the protocol is that the simulator chooses
w2i at random. If this random w2i cannot be distinguished from wti

1 then
the simulation of the “proof” that logw1

w2i = loggτi cannot be distinguished
from an execution of a correct proof.

However, since the signature scheme is undeniable, it is infeasible to
decide if logg T equals logw v for randomly chosen v and w. As v, w and

9.3 Distributed Denial 99

w1 are chosen at random (almost) it is reasonable to assume that w2i cannot
be distinguished from wti

1 , and thus the simulation of step 5 can not be
distinguished from real executions.

Thus protocol distributed ddl is “zero-knowledge” in the (weak)
sense that if the inputs v and w are chosen at random, there is a polynomial
time machine whose output cannot be distinguished from real executions of
the protocol (under assumption SDL). But as remarked above the protocol
is not auxiliary input zero-knowledge.

Chapter 10

Conclusion

We have presented two noninteractive verifiable secret sharing schemes. The
information-theoretic secure scheme from Chapter 3 is quite efficient, but
it is primarily interesting because it, unlike previous suggestions, reveals no
Shannon information about the key. One cannot say in general whether it
is best to protect the secrecy of the key unconditionally or to guarantee the
correctness of the shares unconditionally, but as we have seen one cannot
obtain both properties in a non-interactive verifiable secret sharing scheme.
Thus the choice between the scheme presented here and that of [Fel87] must
depend on the particular application.

It is possible to use this secret sharing scheme in protocols for (compu-
tationally) secure multi-party computations, and in particular it is very easy
to compute linear combinations of shared secrets. The shares of the product
of two shared secrets can be constructed using the ideas in [BGW88], but
would be interesting to have a more efficient method for multiplying shared
secrets.

In Section 3.6 we have applied the ability to add distributed secrets to
obtain a protocol, that allows the members of an organization to choose an
anonymous secret and distribute it verifiably among themselves. The scheme
for sharing a secret s = logg h in Chapter 4 also offers this possibility, and
as an immediate consequence of this we saw that it is possible to construct a
threshold crypto system in which the members choose the secret and public
keys. This facility seems to be quite useful in practice, as not even a trusted
party has to know the secret keys but the construction would be more in-
teresting if the members could also decipher without relying on a trusted

101

party who verifies that the recovered plaintext is correct.

The development of distributed proofs was inspired by the application
to undeniable signatures, but as shown in Chapter 6 this concept also has an
interesting application to identification and signature schemes. However, the
distributed signature scheme suggested here leaves open the problem of con-
structing signatures such that none of the agents can decide, who constructed
the signature, whereas the original signer can do this if necessary. Such a
signature scheme can be constructed using the concept of group signatures
proposed in [CH91].

The definition of distributed proofs requires that at most k − 1 agents
are dishonest. In a (k, n)-secret sharing scheme all n shareholders can in
principle be dishonest as long as no more than k− 1 of them are ever willing
to cooperate in order to misuse the secret. It word be tempting to make this
more general assumption for distributed proofs as well but the restriction that
only k− 1 agents are dishonest implies that at least one honest agent always
participates in a distributed proof and in particular this prevents dishonest
agents from ever executing a distributed proof for L on an input x not in L.

However this leaves open the problem, how an honest agent decides
whether x ∈ L. In the application to verification of undeniable signatures it
has been solved by letting the signer generate a list of hash values of pairs
(message, signature), which the agents are allowed to verify. This is an ap-
propriate solution in this particular application as the signer probably wants
to control which signatures the agents verify. However, in general the agents
would have to decide whether x ∈ L using a multiparty computation. It
would be interesting to have efficient such protocols for the problems men-
tioned in this work. Alternatively, one could require that the distributed
protocols are unrestricted input zero-knowledge (see [FFS88]) such that they
can be simulated for all inputs.

Regarding the security of distributed proofs we have required that the
distribution of the secret key can be simulated and that each subsequent run
of the distributed proof is zero-knowledge. As it is hard for the honest agents
to prevent that a verifier and the dishonest agents execute the distributed
proof many times simultaneously with different honest agents, one should
aim at constructing distributed proofs that are strongly secure.

In this work we have concentrated on protocols that are secure against
a static adversary. This seems to be sufficient for most applications of dis-
tributed proofs, but it would be very interesting to have distributed proofs

102

which are also (provably) secure against dynamic adversaries.

The notion of convertible undeniable signatures and in particular selec-
tively convertible signatures is a useful extension of undeniable signatures as
it gives the signer more choices for his signatures. The scheme presented in
Chapter 8 is quite attractive, as it is relative efficient and is based on a well
known signature scheme, but it would be interesting to have an efficient (se-
lectively) convertible undeniable signature scheme for which the problems of
forging/verifying signatures are provably as hard as solving other well known
problems.

The distributed protocol for verifying the signatures in this scheme
(protocol distributed verification) is also quite applicable in prac-
tice, as it is efficient and the verifier’s part of the protocol is lost as in
protocol sdl. Furthermore, this protocol achieves the right level of se-
curity as it is strongly secure. However, this work leaves open the problem
of constructing an efficient, provably secure distributed proof in which the
agents prove inequality of discrete logarithms.

List of Protocols

Protocol distribute 28
Distribution of a secret s = loggh.
Used in Protocol distributed single signature.

Protocol decipher 38
Deciphering in the threshold crypto system.

Protocil sdl 61
Proof that logg h = logm z.
Used in Protocol verify signature and protocol
distributed denial.

Protocol ddl 65
Proof that logg h �= logm z.

Protocol verify signature 82
Verification of a signature (T, r, s) on the message m.

Protocol deny signature 82
Denial of an invalid signature (T, r, s) on the message m.

Protocol distribute single signature 88
Distribution of the ability to verify the signature (T, r, s) on the
message m.

Protocol decide 88
The agents decide whether they can verify a signature (T, r, s)
on the message m.

104

Protocol distributed verification 89
Distributed verification of a signature (T, r, s) on the message m.

Protocol distributed sdl 89
Distributed proof of equality of discrete logarithms.
Used in Protocol distributed verification.

Protocol distributed denial 94
Distributed denial of an invalid signature (T, r, s) on m.

Protocol distributed ddl 95
Distributed proof of inequality of discrete logarithms.
Used in Protocol distributed denial.

Bibliography

[BC86] G. Brassard and C. Crépeau. Nontransitive transfer of confidence:
a perfect zero-knowledge interactive protocol for sat and beyond.
In Proceedings of the 27th IEEE Symposium on the Foundations
of Computes Science, pages 188–195, 1986.

[BCC88] G. Brassard, D. Chaum, and C Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computes end System Sciences,
37:156–189, 1988.

[BCDP91] J. Byoar, D. Chaum, I. Damg̊ard, and T. Pedersen. Convertible
undeniable signatures. In Advances in Cryptology - proceedings of
CRYPTO 90, Lecture Notes in Computer Science, pages 189–205.
Springer-Verlag, 1991.

[BCP] J. Bos, D. Chaum, and G. Purdy. A voting scheme. Preliminary
draft.

[BD90] E. F. Brickell and D. M. Davenport. On the clasification of ideal
secret sharing schemes. In Advances in Cryptology - proceedings of
CRYPTO 89, pages 278–285, 1990.

[BDL91] J. Brandt, I. Damg̊ard, and P. Landrock. Speeding up prime num-
ber generation, 1991. Presented at AsiaCrypt’91.

[Bet88] T. Beth. A Fiat-Shamir-like authentication protocol for the El-
Gamal scheme. In Advances in Cryptology - proceedings of EU-
ROCRYPT 88, Lecture Notes in Computer Science, pages 77–86.
Springer-Verlag, 1988.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys In Proceedings
AFIPS 1979 Nat. Computer Conf., pages 313–319, 1979.

BIBLIOGRAPHY 106

[BM84] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal of Computation,
13:850–864, 1984.

[BM91] E. F. Bricked and K. S. McCurley. An interactive identification
scheme based on discrete logarithms and factoring. In Advances
in Cryptology - proceedings of EUROCRYPT 90, Lecture Notes in
Computer Science, pages 63–71. Springer-Verlag, 1991.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-
prover interactive proofs: How to remove intractability. In Pro-
ceedings of the 20th Annual ACM Symposium on the Theory of
Computing, pages 113–131, 1988.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computa-
tion. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pages 1–10, 1988.

[BS88] E. F. Brickell and D. R. Stinson. The detection of cheaters in
threshold schemes, August 1988.

[CBDP91] D. Chaum, J. Boyar, I. Damg̊ard, and T. Pedersen. Undeniable
signatures: Applications and theory, 1991. A survey over undeni-
able signatures.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty uncondition-
ally secure protocols. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages 11–19,1988.

[CDG88] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computa-
tions ensuring privacy of each party’s input and correctness of the
result. In Advances in Cryptology - proceedings of CRYPTO 87,
Lecture Notes in Computer Science, pages 87–119. SpringerVerlag,
1988.

[CEG87] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved proto-
col for demonstrating possession of a discrete logarithm and some
generalizations. In Advances in Cryptology - proceedings of EURO-
CRYPT 87, Lecture Notes in Computer Science, pages 127–141,
1987.

BIBLIOGRAPHY 107

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults.
In Proceedings of the 26th IEEE Symposium on the Foundations
of Computes Science, pages 383–395, 1985.

[Cha86] D. Chaum. Demonstrating that a public predicate can be satis-
fied without revealing any information about how. In Advances in
Cryptology - proceedings of CRYPTO 86, Lecture Notes in Com-
puter Science, pages 195–199, 1986.

[Cha91] D. Chaum. Zero-knowledge undeniable signatures. In Advances in
Cryptology - proceedings of EUROCRYPT 90, Lecture Notes in
Computer Science, pages 458–464. Springer Verlag, 1991.

[CA90] D. Chaum and H. van Antwerpen. Undeniable signatures. In Ad-
vances in Cryptology - proceedings of CRYPTO 89, Lecture Notes
in Computer Science, pages 212–216. Springer Verlag, 1990.

[CH91] D. Chaum and E. van Heyst. Group signatures. In Advances in
Cryptology - proceedings of EUROCRYPT 91, Lecture Notes in
Computer Science, pages 257–266. Springer-Verlag, 1991.

[CHP91] D. Chaum, E. van Heyst, and B. Pfitzmann. Cryptographically
strong undeniable signatures, unconditionally secure for the signer,
1991. To appear in the proceedings of CRYPTO 91.

[Dam88] I. Damg̊ard. The application of flaw free functions in cryptography.
Technical Report DAIMI PB – 269, Aarhus University, May 1988.
Ph.D.-thesis.

[dB90] B. den Boer. Diffie-Hellman is as strong as discrete log for cer-
tain primes. In Advances in Cryptology - proceedings of CRYPTO
88, Lecture Notes in Computer Science, pages 530–539. Springer-
Verlag, 1990.

[Des88] Y. Desmedt. Society and group oriented cryptography: A new
concept. In Advances in Cryptology - proceedings of CRYPTO 87,
Lecture Notes in Computer Science, pages 120–127, 1988.

BIBLIOGRAPHY 108

[DF90] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances
in Cryptology - proceedings of CRYPTO 89, Lecture Notes in Com-
puter Science, pages 307–315, 1990.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Trans. Inform. Theory, IT-22(6):644–654, November 1976.

[DS82] D. Dolev and H.R. Strong. Polynomial algorithmes for multiple
processor agreement. In Proceedings of the 14th Annual ACM Sym-
poium on the Theory of Computing, pages 401–407, 1982.

[EG85] T. El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Advances in Cryptology - proceed-
ings of CRYPTO 84, Lecture Notes in Computer Science, pages
10–18. SpringerVerlag, 1985.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable se-
cret sharing. In Proceedings of the 28th IEEE Symposium on the
Foundations of Computer Science, pages 427–437, 1987.

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of iden-
tity. Journal of Cryptology, 1(2):77–94, 1988.

[Fra90] Y. Frankel. A practical protocol for large group oriented networks.
In Advances in Cryptology - proceedings of EUROCRYPT 89, Lec-
ture Notes in Computer Science, pages 56–61. SpringerVerlag,
1990.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptol-
ogy - proceedings of EUROCRYPT 86, Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1987.

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran-
dom functions. In Proceedings of the 25th IEEE Symposium on the
Foundations of Computer Science, 1984.

[GHY88] 2. Galil, S. Haber, and M. Yung. Cryptographic computation:
Secure fault-tolerant protocols and the public-key model. In Ad-
vances in Cryptology - proceedings of CRYPTO 87, Lecture Notes
in Computer Science, pages 135–155. Springer-Verlag, 1988.

BIBLIOGRAPHY 109

[GL89] O. Goldreich and Leonid A. Levin. A hard-core predicate for all
one-way functions. In Proceedings of the 21st Annual ACM Sym-
posium on the Theory of Computing, 1989.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature
scheme secure against adaptive chosen message attack. SIAM
Journal on Computing, 17(2):281–308, April 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complex-
ity of interactive proof-systems. SIAM Journal of Computation,
18(1):186–208, 1989.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol
design. In Proceedings of the 27th IEEE Symposium on the Foun-
dations of Computer Science, pages 174–187, 1986.

[Gor84] J. Gordon. Strong primes are easy to find. Electronic Letters, June
1984.

[Hwa91] T. Hwang. Cryptosystem for group oriented cryptography. In Ad-
vances in Cryptology - proceedings of EUROCRYPT 90, Lecture
Notes in Computer Science, pages 352–360. Springer-Verlag, 1991.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for
complexity based cryptography. In Proceedings of the 30th IEEE
Sympoium on the Foundations of Computes Science, 1989.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random gener-
ation from one-way functions. In Proceedings of the 21st Annual
ACI Symposium on the Theory of Computing, 1989.

[IS91] I. Ingemarsson and G. J. Simmons. A protocol to set up shared
secret schemes without the assistance of a mutually trusted party.
In Advances in Cryptology - proceedings of EUROCRYPT 90, Lec-
ture Notes in Computer Science, pages 266–282. Springer-Verlag,
1991.

[IY88] R. Impagliazzo and M. Yung. Direct minimum-knowledge compu-
tations. In Advances in Cryptology - proceedings of CRYPTO 87,

BIBLIOGRAPHY 110

Lecture Notes in Computer Science, pages 40–51. SpringerVerlag,
1988.

[Kot85] S. C. Kothari. Generalized linear threshold scheme. In Advances in
Cryptology - proceedings of CRYPTO 84, Lecture Notes in Com-
puter Science, pages 231–241. SpringerVerlag, 1985.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. ACM Trans. on Programming Languages and Systems,
4(3):382–401, July 1982.

[Mic90] S. Micali, August 1990. Personal communication through J. Boyar.

[MR91] S. Micali and T. Rabin. Collective coin tossing without assump-
tions nor broadcasting. In Advances in Cryptology - proceedings of
CRYPTO 90, Lecture Notes in Computer Science, pages 253–266.
Springer-Verlag, 1991.

[MS81] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-
solomon codes. Communications of the ACM, 24:583–583, 1981.

[Nao90] M. Naor. Bit commitment using randomness. In Advances in Cryp-
tology - proceedings of CRYPTO 89, Lecture Notes in Computer
Science, pages 128–136, 1990.

[Ped91a] T. P. Pedersen. Distributed provers with applications to undeni-
able signatures. In Advances in Cryptology - proceedings of EURO-
CRYPT 91, Lecture Notes in Computer Science, pages 221–242.
Springer-Verlag, 1991.

[Ped91b] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing, 1991. To appear in the proceedings of
Crypto’91.

[Ped91c] T. P. Pedersen. A threshold cryptosystem without a trusted party.
In Advances in Cryptology - proceedings of EUROCRYPT 91, Lec-
ture Notes in Computer Science, pages 522–526. Springer-Verlag,
1991.

[PH78] S. Pohlig and M. E. Hellman. An improved algorithm for com-
puting logarithms over GF(p) and its cryptographic significance.
IEEE Transactions on Information Theory, IT-24:106–110, 1978.

BIBLIOGRAPHY 111

[Rab80] M. O. Rabin. Probabilistic algorithm for primality testing. Journal
of number theory, 12:128–138, 1980.

[RB89] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the 21st Annual
ACM Symposium on the Theory of Computing, pages 73–85, 1989.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for se-
cure signatures. In Proceedings of the 22nd Annual ACM Sympo-
sium on the Theory of Computing, 1990.

[Sch90] C. P. Schnorr. Efficient identification and signatures for smart
cards. In Advances in Cryptology - proceedings of CRYPTO 89,
Lecture Notes in Computer Science, pages 239–252. Springer-
Verlag, 1990.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell
Syst. Tech. J., 27:379–423, July 1948.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM,
22:612–613, 1979.

[Sim90] G. J. Simmons. How to (really) share a secret. In Advances in
Cryptology - proceedings of CRYPTO 88, Lecture Notes in Com-
puter Science, pages 390–448. Springer-Verlag, 1990.

[SS77] R. Solovay and V. Strassen. Fast monte-carlo tests for primality.
Siam journal of computing, pages 84–85, 1977.

[TW86] M. Tompa and H. Woll. How to share a secret with cheaters. In Ad-
vances in Cryptology - proceedings of CRYPTO 86, Lecture Notes
in Computer Science, pages 261–265. Springer-Verlag, 1986.

[TW87] M. Tompa and H. Wall. Random set-reducibility and zero knowl-
edge interactive proofs of possession of information. In Proceedings
of the 28th IEEE Sgmposium on the Foundations of Computes Sci-
ence, pages 472–482, 1987.

[Wag79] S. S. Wagstaff Jr. Greatest of the least primes in arithmetic pro-
gression having a given modulus. Mathematics of Computation,
33(147):1073–1080, July 1979.

