
P2P Mixing and Unlinkable Bitcoin Transactions
Anonymity of the people, by the people, and for the people

Tim Ruffing
CISPA, Saarland University

tim.ruffing@mmci.uni-saarland.de

Pedro Moreno-Sanchez
Purdue University

pmorenos@purdue.edu

Aniket Kate
Purdue University
aniket@purdue.edu

Abstract—Starting with Dining Cryptographers networks
(DC-net), several peer-to-peer (P2P) anonymous communication
protocols have been proposed. Despite their strong anonymity
guarantees none of those has been employed in practice so
far: Most fail to simultaneously handle the crucial problems
of slot collisions and malicious peers, while the remaining ones
handle those with a significant increased latency (communication
rounds) linear in the number of participating peers in the best
case, and quadratic in the worst case. We conceptualize these
P2P anonymous communication protocols as P2P mixing, and
present a novel P2P mixing protocol, DiceMix, that only requires
constant (i.e., four) communication rounds in the best case, and
4 + 2f rounds in the worst case of f malicious peers. As every
individual malicious peer can prevent a protocol run from success
by omitting his messages, we find DiceMix with its worst-case
linear-round complexity to be an optimal P2P mixing solution.

On the application side, we find DiceMix to be an ideal
privacy-enhancing primitive for crypto-currencies such as Bit-
coin. The public verifiability of their pseudonymous transac-
tions through publicly available ledgers (or blockchains) makes
these systems highly vulnerable to a variety of linkability and
deanonymization attacks. DiceMix can allow pseudonymous users
to make their transactions unlinkable to each other in a manner
fully compatible with the existing systems. We demonstrate the
efficiency of DiceMix with a proof-of-concept implementation. In
our evaluation, DiceMix requires less than 8 seconds to mix 50
messages (160 bits, i.e., Bitcoin addresses), while the best protocol
in the literate requires almost 3 minutes in a very similar setting.
As a representative example, we use DiceMix to define a protocol
for creating unlinkable Bitcoin transactions.

Finally, we discover a generic attack on P2P mixing protocols
that exploits the implicit unfairness of a protocol with a dishonest
majority to break anonymity. Our attack uses the attacker’s real-
world ability to omit some communication from a honest peer to
deanonymize her input message. We also discuss how this attack
is resolved in our application to crypto-currencies by employing
uncorrelated input messages across different protocol runs.

I. INTRODUCTION

Chaum [15] introduced the concept of anonymous digital
communication in the form of mixing networks (or mixnet). In
the mixnet protocol, a batch of encrypted messages from users
are decrypted, randomly permuted, and relayed by a sequence
of routers (or proxies) to avoid individual messages from
getting traced through the network. The original mixnet protocol
as well as its several more successful successor anonymous
communication networks (ACNs) such as onion routing [26],
AN.ON [2], [5], and Tor [18] inherently require access to a set
of geo-politically distributed routers such that at least some of
them are trusted to not break users anonymity.

Starting with the dining cryptographers network (DC-net)
protocol [14], another line of ACNs research emerged, where
users (or peers) do not employ any third party proxies and
instead communicate with each other to send their messages
anonymously. While the DC-net protocol can guarantee suc-
cessful termination and anonymity against honest-but-curious
adversary controlling a subset of users (or peers), it is easily
prone to disruption by a single malicious peer who sends
invalid protocol messages (active disruption) or omits protocol
messages entirely (crash). Moreover, a DC-net protects the
anonymity of the involved malicious peers and subsequently
cannot ensure termination of the protocol run by detecting and
excluding the malicious peer.

To address this termination issue, several recent successors
of the DC-net protocol [12], [17], [22], [23], [27], [49]
incorporate cryptographic accountability mechanisms against
active disruptions. The employed techniques are either pre-
ventive, e.g., zero-knowledge proofs proving the validity of
sent messages [27], or reactive, e.g, the revelation of session
secrets to expose and exclude malicious disruptors after a
failed protocol run [17]. Through these measures, these recent
successors of DC-net have demonstrated that, for a set of
mutually distrusting peers, sending their messages anonymously
is feasible purely by communicating with each other in a peer-
to-peer (P2P) manner, even when a large majority of those
are malicious. Moreover, given the surging demand for strong
anonymity for P2P cryptocurrency systems such as Bitcoin [1],
[3], [34], [39], [40], [44], [46], these schemes have now resulted
in some real-world P2P Bitcoin mixing systems [36], [43], [45].

Nevertheless, these feasible solution are still not ideal: with
communication rounds linear in the number of participating
peers in the best case and quadratic in the worst case, these
current pure P2P solutions [17], [45], [49] are not scalable as
the number of participating peers grow; e.g., the Bitcoin P2P
mixing protocol CoinShuffle [45] requires a few minutes for
anonymizing communication of 50 participants. In this paper,
we wish to bring the pure P2P anonymous communication
protocol from the realm of feasibility to the realm of real-
world usage.

A. Contributions

We compartmentalize our contributions in this paper in four
key components.

a) P2P Mixing: As our first contribution, we concep-
tualize peer-to-peer (P2P) mixing as a natural generalization
of the dining cryptographers network (DC-net) [14] protocol.

A P2P mixing protocol allows a set of mutually distrusting
peers to publish their messages anonymously without requiring
any external (trusted or untrusted) party even when all but
two of those behave malicious. Motivated from the privacy
requirement of real-world P2P payment systems, we design an
interface and execution model for P2P mixing protocol that
allows easy integration of a P2P mixing protocol instance to
the anonymity-seeking payment application.

b) DiceMix Protocol: Although some DC-net succes-
sors [25], [35] as well as some anonymous group messaging
systems [17], [45], [49] satisfy the P2P mixing requirements,
we found those to be not efficient enough for a large-scale
mixing. As our second contribution, we present the new P2P
mixing protocol DiceMix. DiceMix builds on the original DC-
net protocol, and handles collisions and malicious peers using an
interesting privacy-preserving redundant messaging step. When
every peer behaves honestly, DiceMix requires only a constant
(i.e., four) number of rounds, and it only increases to 4 + 2f
rounds in the worst case, even in the presence of f malicious
peers. Both of these communication round complexities are
a linear factor better than the existing approaches [17], [25],
[35], [45].

We also provide a proof-of-concept implementation of the
DiceMix protocol, and evaluate it in a global Emulab [52]
network scenario. Our results show that even 50 peers can
anonymously broadcast their messages in less than 8 seconds,
demonstrating that DiceMix is highly practical for cryptocur-
rency networks where transaction execution takes a few minutes.

c) CoinShuffle++ Protocol: As our third contribution,
we instantiate DiceMix with the most prominent P2P pay-
ment system: Bitcoin. In particular, building on the CoinJoin
paradigm [37] and DiceMix, we present CoinShuffle++, a
practical decentralized mixing protocol for the Bitcoin users.
CoinShuffle++ not only is considerably simpler and thus
easier to implement than CoinShuffle [45] but also inherits
the efficiency of DiceMix and thus outperforms CoinShuffle
significantly. In particular, in a scenario with 50 participants and
a really similar evaluation setting, a successful transaction with
CoinShuffle++ can be performed in 8 seconds instead of the
almost the 3 minutes required with CoinShuffle. We also find
CoinShuffle++ to be compatible with other currently deployed
privacy-preserving P2P currency systems and provide detailed
description to ease deployment in crypto-currency clients.

Moreover, with its well-defined generic communication
interface, DiceMix is applicable to P2P communication systems
in general, and we propose it also for non-payment applications
such as Sybil-resistant pseudonymization [21].

d) A Generic Attack on P2P Mixing Protocols: As our
fourth and final contribution, we provide a generic attack on
P2P mixing protocols that exploits the implicit unfairness of a
protocol allowing dishonest majority to break the anonymity of
a peer. Our attack uses the attacker’s real-world ability to omit
some communication from a honest peer to deanonymize this
contributed message. We exemplify our attack on the Dissent
shuffle protocol [17], [49], and also discuss its generality as
well as impossibility to avoid it without making any additional
assumption similar to the fairness resolution. Our attack draws
similar conclusion as those drawn for DoS attacks by Borisov
et al. [11] for mixnets and onion routing.

Nevertheless, we also show how this attack can easily be
avoided in applications which aim to mix fresh uncorrelated
input messages, e.g., coin mixing in the anonymity-seeking
crypto-currencies.

B. Organization

The paper is organized as follows. We start by defining
the problem of P2P mixing in Section II. We then overview
the DiceMix protocol in Section III, while we detail the
DiceMix protocol in Section IV and evaluate its performance
in Section V. We describe the use of DiceMix to achieve
anonymous transactions in Bitcoin in Section VI and discuss
related work in Section VII. We describe a deanonymization
attack on state-of-the-art P2P mixing protocols in Section VIII
and we conclude our work in Section IX.

II. CONCEPTUALIZING PEER-TO-PEER (P2P) MIXING

In this section, we define the concept of P2P mixing. In
particular, we describe the system model, the functionality of a
P2P mixing protocol by describing its inputs and outputs, and
a detailed execution model. We then describe the threat model,
and state the security goals of a P2P mixing protocol.

A. P2P Mixing Protocol

A P2P mixing protocol [17], [45], [55] allows n mutually
distrusting peers to simultaneously broadcast their messages
in an anonymous manner without the help of any third-party
proxy, such that an attacker controlling the network and some
peers cannot tell which of the fresh messages belongs to which
honest peer. In more detail, the anonymity set of an individual
honest peer should be the set of all honest participating peers,
and we expect the size of this set to be at least two.

The requirement to achieve sender anonymity without the
help of any third-party proxy such as an onion router or a
mix server makes P2P mixing fundamentally different from
most well-known anonymous communication techniques in the
literature. Unlike standard techniques such as onion routing
or mix cascades, P2P mixing relies on a much weaker trust
assumption and is expected to terminate successfully and
provide anonymity in the presence of an attacker controlling
up to n − 2 peers. As a consequence, each peer must be
actively involved in the anonymous communication process
which comes with inherent restrictions and expense.

B. Setup and Communication Model

We assume that peers are connected via a bulletin board, e.g.,
a server receiving messages from each peer and broadcasting
them to all other peers. We stress that sender anonymity will
be required to hold even against a malicious bulletin board
colluding with the attacker; the bulletin board is purely a matter
of communication.

We assume the bounded synchronous communication set-
ting, where time is divided in fixed communication rounds such
that all messages broadcast by a peer in a round are available
to the peers by the end of the same round, and absence of a
message on the bulletin board indicates that the peer in question
failed to send a message during the round.

2

Such a bulletin board can seamlessly be deployed in practice,
and in fact even already deployed Internet Relay Chat (IRC)
servers suffice.1 To be able to tolerate faulty or disruptive
bulletin boards, it is possible to add redundancy by running the
same instance of the P2P mixing protocol on multiple bulletin
boards. The bulletin board can alternatively be implemented
by an (early stopping) reliable broadcast protocol [19], [47] if
one is willing to accept the increased communication cost.

We assume that all peers willing to participate in a
P2P mixing protocol are identified by verification keys of a
digital signature scheme, and that the peers know each other’s
verification keys at the beginning of a protocol execution.

To find other peers willing to mix messages, a suitable
bootstrapping mechanism can be used. Note that a malicious
bootstrapping mechanism might hinder sender anonymity by
preventing honest peers from participating in the protocol
and thereby forcing a victim peer to run the P2P mixing
protocol with no or only a few honest peers. While this
is a realistic threat against any anonymous communication
protocol in general, we consider protection against a malicious
bootstrapping mechanism orthogonal to our work.

C. Input and Outputs of a P2P Mixing Protocol

Our treatment of a P2P mixing protocol is special with
respect to inputs and outputs. Regarding inputs (the messages
to mix), allowing the adversary to control up to n− 2 (i.e., a
majority of) peers introduces an unexpected requirement: input
messages must be fresh. Regarding outputs, a P2P mixing
protocol according to our definitions provides the feature that
the peers will have to explicitly agree on the output, i.e., the
set of anonymized messages.

1) Freshness of Input Messages: In contrast to state-of-the-
art anonymous and terminating P2P mixing protocols such as
Dissent [17] and the protocol by Golle and Juels [27], we
require that each peer uses a freshly generated bitstring with
sufficient entropy, e.g., a freshly generated verification key, as
input message to be mixed. Furthermore, if the honest peers
exclude a peer from the protocol, e.g., because the peer appears
offline, all messages used so far will be discarded. Then, all
remaining peers again generate fresh messages and are required
to continue the protocol with these messages.

While this seems to be a severe restriction of functionality
compared to the aforementioned protocols, a restriction of
this kind is in fact necessary to guarantee anonymity. If
otherwise peers can arbitrarily choose their messages in a
P2P mixing protocol providing termination, the protocol is
inherently vulnerable to an attack breaking sender anonymity!
We will explain this attack, which works against state-of-the-art
P2P mixing protocols and has been overlooked in the literature
so far, in detail in Section VIII.

2) Explicit Confirmation of the Output: We observe that
anonymity-seeking P2P applications such as coin mixing [37],
[45], [55] or identity mixing [21] require that the peers agree
explicitly on the outcome of the mixing before it comes into

1 Servers supporting IRC version 3.2 are capable of adding a server timestamp
to every message [48]; this can ensure that peers agree whether a certain
message arrived in time.

effect, e.g., by collectively signing the set M of anonymized
messages.

We call this additional functionality confirmation and
incorporate it in our model. The form of the confirmation
depends on the application and is left to be defined by the
application which calls the protocol. For example in coin
mixing, the confirmation is a special transaction signed by
all peers; we will discuss this in detail in Section VI.

While the protocol cannot force malicious peers to confirm
M , those malicious peers should be excluded and the protocol
should finally terminate successfully with a proper confirmation
by all non-excluded peers.

D. Interface and Execution Model

To deploy a P2P mixing protocol in various anonymity-
seeking applications, our generic definition leaves it up to the
application to specify exactly how fresh input messages are
obtained and how the confirmation on the result is performed.
We restrict our discussion here to terminology and a syntactic
description of the interface between the anonymity-seeking
application and an employed P2P mixing protocol, and leave
the semantic requirements to the protocol construction later.

A protocol instance consists of one or several runs, each
started by calling the user-defined algorithm GEN() to obtain
a fresh input message to be mixed. If a run is disrupted, the
protocol can exlude peers that turned out to be malicious.
Otherwise, the protocol will obtain a candidate result, i.e., a
candidate output set M of anonymized messages. Then it calls
the user-defined confirmation subprotocol CONFIRM(i, P,M),
whose task is to obtain confirmation for M from the final
peer set P of all unexcluded peers. (The first argument i is
an identifier of the run.) Possible confirmations range from a
signature on M , to a complex task requiring interaction among
the peers, e.g., the creation of a treshold signature.

If confirmation can be obtained from everybody, then the run
and the P2P mixing protocol terminates successfully. Otherwise,
CONFIRM(i, P,M) by convention fails and reports malicious
peers deviating from the confirmation steps back to the P2P
mixing protocol. In this case, the protocol can start a new run
by obtaining a fresh message via GEN(); the malicious peers
are excluded in this new run.

An example execution is depicted in Fig. 1. Note that
while in this example execution, all runs are sequential, this
is not a requirement. For improved efficiency, a P2P mixing
protocol can perform several runs concurrently, e.g., to have
an already started second run in reserve in case the first fails.
Then the protocol can terminate with the first run that confirms
successfully, and abort all other runs.

E. Threat Model

In general, we assume that the attacker controls a number
f of the peers.

For the sender anonymity property, we assume that the
attacker additionally controls the bulletin board, i.e., the
network. In particular, the attacker can partition the network
and block some messages from a honest peers. In case of
successful termination, the anonymity set of each honest peer

3

Application

P2P Mixing Protocol

GEN() CONFIRM(2, P
2
, M

2
) CONFIRM(3, P

3
, M

3
)GEN() GEN()

Run 1 Run 2 Run 3

P
2
, M

2
P

3
, M

3

P
3
, M

3

m
1

m
2

m
3

P
1

P
mal,3

= ∅P
mal,2

≠ ∅

Fig. 1: Example Execution of a P2P Mixing Protocol. The figure shows the calls during the execution; time proceeds from left
to right. The execution starts with the application calling the P2P mixing protocol with an initial set P1 of peers. The P2P mixing
protocol then starts Run 1 by generating a new message m1 (via calling GEN()). Run 1 fails early (e.g., due to active disruption
by a peer p) and m1 is discarded. The P2P mixing protocol then starts Run 2 with peer set P2 = P1 \ {p} by generating a new
message m2. Run 2 is initially not disrupted, and the P2P mixing protocol calls the confirmation subprotocol to confirm the set
M2 of mixed messages with the peers in P2. The confirmation subprotocol fails, because a set Pmal,2 of peers refuse to confirm.
The confirmation subprotocol reports those malicious peers back to the P2P mixing protocol, which in turn discards m2. The P2P
mixing protocol then starts Run 3 with peer set P3 = P2 \ Pmal,2. This time, the confirmation subprotocol succeeds and indicates
that by returning an empty set (of malicious peers) to the P2P mixing protocol. That is, all peers in P3 have confirmed that the set
M3 of anonymized messages is the final output. The P2P mixing protocol returns P3 and M3 to the application and terminates.

will be the set of unexcluded honest peers2. This means that
we need f < n− 1 at the end of the protocol, where n is the
number of unexcluded peers, to ensure that at least two honest
peers are present and the anonymity guarantee is meaningful.

For the termination property, will trust the bulletin board
to relay messages reliably and honestly, because termination
(or any liveness property) is naturally impossible to achieve
against a malicious bulletin board, which can just block all
communication.

F. Security Goals

We are now ready to state the security properties of a P2P
mixing protocol.

Sender Anonymity: If the protocol succeeds for honest peer
p in a run (as described in Section II-D) with message mp

and final peer set P , and p′ ∈ P is another honest peer,
then the attacker cannot distinguish whether message mp

belongs to p or to p′.
Termination: If the bulletin board is honest, the protocol

eventually terminates successfully for every honest peer.

Note that our definition of sender anonymity is only
concerned with the messages in a successful run, i.e., no
anonymity is guaranteed for messages discarded in failed runs
(see Section II-D). This demands explanation, because giving
up anonymity in case of failed confirmation seems to put
privacy at risk at first glance. However, the discarded messages
are just randomly generated bitstings and have never been
and will never be used outside the P2P mixing protocol; in
particular no confirmation took place. So it is safe to give up
sender anonymity for discarded messages. It turns out that this
permissive definition is sufficient for a variety of applications
and allows for very efficient constructions.

2A honest peer might appear offline due to the attacker blocking network
messages. Such a peer can be excluded to allow the remaining peers to proceed.

III. SOLUTION OVERVIEW

Our core tool to design an efficient P2P mixing protocol is
a Dining Cryptographers Network (DC-net) [14]. We describe
an example of a DC-net involving two users. Suppose that
two peers p1 and p2 share a key k and that one of the peers
(e.g., p1) wishes to anonymously publish a message m such
that |m| = |k|. For that, p1 publishes M1 ··= m ⊕ k and
p2 publishes M2 ··= k. An observer can compute M1 ⊕M2,
effectively recovering m. The origin of this message is hidden:
without knowing the secret k, the observer cannot determine
which peer published m. We refer the reader to [27] for details
on how to extend this basic protocol to multiple users.

Besides the need for pairwise symmetric keys, which can
be overcome by a key exchange mechanism, there are two
key issues to deploy a DC-net in practice with an arbitrary
number of peers, namely first making it possible that all peers
can publish a message simultaneously, and second, ensuring
termination of the protocol even in the presence of malicious
disruptors, while preserving anonymity.

A. Handling Collisions

Each peer p ∈ P in the mixing seeks to anonymously
publish her own message mp. Naively, they could run |P |
instances of a DC-net, where each peer randomly selects one
instance (or slot) to publish her message. However, even if all
peers are honest, two peers can choose the same slot with high
probability, and their messages are unrecoverable [27].

One proposed solution consists on performing an anony-
mous slot reservation mechanism so that peers agree in
advance on an ordering for publishing [25], [35]. However, this
mechanism adds communication rounds among the peers and
these reservation schemes must handle collisions on themselves.
Alternatively, it is possible to set many more slots so that
probability of collision decreases [16]. However, this becomes

4

inefficient quickly, and two honest peers could still collide with
some probability.

Instead, we follow the paradigm of handling collisions by
redundancy [12], [20]. Assume that messages to be mixed
are encoded as elements of a finite field F with characteristic
greater than the number n of peers. Given n slots, each peer i,
with message mi, publishes mj

i (i.e., mi to the j-th power) in
the j-th slot. This results in having a collision from all peers
for each of the slots. Using addition in F instead of XOR to
create DC-net messages, the j-th collision results on the i-th
power sum Si =

∑
im

j
i .

Now, we require a mechanism to extract the messages mi

from the power sums Si. Let assume that there are n peers in
a run of the DiceMix protocol. At the end of it, the peers can
compute the power sums:

P1 = x1 + x2 + . . .+ xn

P2 = x21 + x22 + . . .+ x2n
. . .

Pn = xn1 + xn2 + . . .+ xnn

This can be then used to obtain the values of x1, . . . xn
using Newton’s identities [28]. For that, let f(x) = anx

n +
an−1x

n−1+ . . .+a1x+a0 be a polynomial such that f(x) = 0
have roots x1, x2, . . . , xn. Now, we know that an = 1 given
that it is the coefficient of xn resulting from the product of
(x− x1) · . . . · (x− xn). Newton’s identities state that

P1 + an−1 = 0

P2 + an−1P1 + 2an−2 = 0

P3 + an−1P2 + an−2P1 + 3an−3 = 0

. . .

From here, we know all the Pi so that we can easily recover
the ai. Now, once we know the coefficients for the polynomial
f(x), we can factorize it. The n roots are the n values that we
were looking for.

B. Handling Disruption and Ensuring Termination

Recovering the messages only works when all peers honestly
follow the protocol. However, a peer could disrupt the DC-
net by simply using inconsistent DC-net messages. Then we
must ensure that the protocol will still eventually terminate
successfully.

When a candidate set M is determined, every honest peer
checks whether her input message is indeed in M . Depending
on the outcome of this check, the peer either starts the
confirmation subprotocol to confirm a good M , or reveals
the secret key used in the key exchange to determine who is
responsible for an incorrect M . We face two challenges on the
way to successful termination.

1) Consistent Detection of Disruption: The first challenge is
to ensure that indeed M does not contain any honest message.
Only then all honest peers will agree on whether disruption
has occurred and take the same control flow decision at this
stage of the protocol, which is crucial for termination

To overcome this challenge, every peer must provide a
non-malleable commitment (e.g., using a hash function) to

its DC-net vector before it sees the vectors of other peers.
In this manner, malicious peers are forced to create their
DC-net vectors independently of the DC-net vector (and the
unpredictable input messages) of honest peers. Thus, the
redundant encoding of messages ensures that a malicious peer
is not able to create a malformed DC-net vector that results in
a distortion of only a subset of the honest peers. Intuitively, to
distort some messages but keep some other message m of a
honest peer intact, the malicious peer must influence all power
sums consistently. This, however, would require a DC-net vector
that depends on m (as we show in Section IV-D), which is
prevented by the non-malleability of the commitments. This
ensures that all honest peers agree on whether M is correct or
not, and take the same control flow decision.

2) Exposing a Disruptor: The second challenge is that the
misbehaving peer is not trivially detected given the sender
anonymity property of DC-nets. To overcome this, every peer
is required to reveal the secret key used in the initial key
exchange. Then every peer can replay the steps done by every
other peer and eventually detect and expel the misbehaving
peer from a new run.

Note that the revelation of the secret keys clearly breaks
sender anonymity for the current run of the protocol. However,
the failed run will be discarded and a new run with fresh
cryptographic keys and fresh messages will be started without
the misbehaving peer. This is in line with our definition of
sender anonymity, which does not impose a requirement on
failed runs.

An important guarantee provided by DiceMix is that if a
protocol run fails, the honest peers agree on the set of malicious
peers to be excluded. Although this is critical for termination,
this aspect has not been properly formalized or addressed in
some previous P2P mixing protocols [17], [45], [49] supposed
to ensure termination.

IV. THE DICEMIX PROTOCOL

In this section we present DiceMix, an efficient P2P mixing
protocol, which terminates in only 4+2f rounds in the presence
of f malicious peers.

A. Building Blocks

1) Digital Signatures: We require a digital signature scheme
(KeyGen, Sign, Verify) unforgeable under chosen-message
attacks (UF-CMA). The algorithm KeyGen returns a private
signing key sk and the corresponding public verification key
vk . On input message m, Sign(sk ,m) returns σ, a signature
on message m using signing key sk . The verification algorithm
Verify(pk , σ,m) outputs true iff σ is a valid signature for m
under the verification key vk .

2) Non-interactive Key Exchange: We require a non-in-
teractive key exchange (NIKE) mechanism (NIKE.KeyGen,
NIKE.SharedKey) secure in the CKS model [13], [24].
The algorithm NIKE.KeyGen(id) outputs a public key
npk and a secret key nsk for given a party identi-
fier id . NIKE.SharedKey(id1, id2,nsk1,npk2, sid) outputs a
shared key for the two parties and session identifier sid .
NIKE.SharedKey must fulfill the standard correctness require-
ment that for all session identifiers sid , all parties id1, id2, and

5

Runs Communication rounds

1 KE CM DC SK

2 KE CM
RV
DC

CF

3 KE CM
RV
DC

CF

4 KE CM

Fig. 2: Example for a DiceMix execution. Run 1 fails due
to DC-net disruption. Run 2 fails to confirm. Run 3 finally
succeeds and run 4 is then aborted. Rows represent protocol
runs and columns represent communication rounds. Blue parts
are for concurrency; the arrows depict the dependency between
runs, i.e., some run informs the next run about the peers to
exclude. KE: Key exchange; CM: Commitment; DC: DC-net;
RV: Reveal pads; SK: Reveal secret key; CF: Confirmation.

all corresponding key pairs (npk1,nsk1) and (npk2,nsk2),
it holds that NIKE.SharedKey(id1, id2,nsk1,npk2, sid) =
NIKE.SharedKey(id2, id1,nsk2,npk1, sid). Additionally, we
require an algorithm NIKE.ValidatePK(npk), which out-
puts true if and only if npk is a public key in the out-
put space of NIKE.KeyGen, and we require an algorithm
NIKE.ValidateKeys(npk ,nsk) which outputs true iff nsk is
a secret key for the public key npk .

Static Diffie-Hellman key exchange satifies these require-
ments [13], given a suitable key derivation algorithm such as
NIKE.SharedKey(id1, id2, x, g

y) ··= K((gxy, {id1, id2}, sid))
for a hash function K modeled as a random oracle.

3) Hash Functions: We require two hash functions H and
G both modeled as a random oracle.

4) Conventions and Notation for the Pseudocode: We use
arrays written as ARR[i], where i is the index. We denote the
full array (all its elements) as ARR[].

Message x is broadcast using “broadcast x”. The command
“receive X[p] from all p ∈ P where X(X[p]) missing C(Poff)”
attempts to receive a message from all peers p ∈ P . The
first message X[p] from peer p that fulfills predicate X(X[p])
is accepted and stored as X[p]; all further messages from p
are ignored. When a timeout is reached, the command C is
executed, which has access to a set Poff ⊆ P of peers that did
not send a (valid) message.

Regarding concurrency, a thread that runs a procedure
P(args) is started using “t ··= fork P(args)”, where t is a
handle for the thread. A thread t can either be joined using
“r ··= join t”, where r is its return value, or it can be aborted
using “abort t”. A thread can wait for a notification and receive
a value from another thread using “wait”. The notifying thread
uses “notify t of v” to notify thread t of some value v.

B. Contract with the Application

In the following, we specify the contract between the
DiceMix and the application calling it. We start with two
guarantees provided by DiceMix to the application and then
we describe features required on the application by DiceMix.

1) Guarantees Provided to the Application: The confirma-
tion subprotocol is provided with two guarantees. First, DiceMix
ensures that all honest peers call the confirmation subprotocol
in the same communication round with the same parameters;
we call this property agreement.

Second, to ensure that no peer can refuse confirmation for
a legitimate reason, e.g., an incorrect set M not containing her
message, our protocol ensures that all honest peers deliver
the same and correct message set M . Consequently, the
confirmation subprotocol CONFIRM(i, P,M) can safely assume
that peers refusing to confirm are malicious. We call this
validity.

The purpose of both of these guarantees is to ensure
correct functionality of the confirmation subprotocool, and
the guarantees are only provided if the bulletin board is honest.
As a consequence, it is up to the confirmation subprotocol to
fail safely if they do not hold.

a) Agreement: Assume that the bulletin board is honest.
Let p and p′ be two honest peers in a protocol instance. If
p calls CONFIRM(i, P,M)3 in some communication round r,
then p′ calls CONFIRM(i, P,M) with the same message set M
and final peer set P in the same communication round r.

b) Validity: Assume that the bulletin board is honest.
If honest peer p calls CONFIRM(i, P,M) with message set M
and final peer set P , then (i) for all honest peers p′ and their
messages mp′ , we have mp′ ∈M , and (ii) we have |M | = |P |.

2) Requirements on the Application: Next, we specify the
guarantees that the application must provide to DiceMix to
ensure proper function.

We assume that input messages generated by GEN() are
encoded in a prime field Fq , where q is larger than the number
of peers in the protocol. Also, we assume w.l.o.g. that the
message m returned by GEN() has sufficient entropy such that
it can be predicated only with negligible probability. (This can
be ensured by a randomized encoding such as encoding m as
m||r for a sufficiently large string r.) Note that this in particular
implies that q is at least as large as the security parameter.

We require two natural properties from the confirmation
subprotocol. The first property (correct confirmation) states that
a successful call to the subprotocol indeed confirms that the
peers in P agree on M . The second property (correct exclusion)
states that in an unsuccessful call, the confirmation subprotocol
identifies at least one malicious peer, and no honest peer is
falsely identified as a malicious peer.

a) Correct Confirmation: Even if the bulletin board
is malicious,4 we require the following: If a call to
CONFIRM(i, P,M) succeeds for peer p (i.e., if the call returns
an empty set Pmalicious = ∅ of malicious peers refusing confirma-
tion), then all honest peers in P have called CONFIRM(i, P,M).

3CONFIRM(. . .) will actually take more arguments but they are not relevant
for this subsection.

4This property puts forth a requirement on a successful call of the
confirmation subprotocol. Such a successful call will result in a successful run
and ultimately in a successful termination of the whole P2P mixing protocol,
which implies that the messages are not discarded and sender anonymity is
required for this run. So this property is crucial for sender anonymity and thus
we must assume that it holds even if the bulletin board is malicious.

6

b) Correct Exclusion: Assume that the bulletin is honest.
If CONFIRM(i, P,M) returns a set Pmalicious 6= ∅ for peer p,
then CONFIRM(i, P,M) returns the same set Pmalicious for every
honest peer p′. Furthermore, the returned set Pmalicious does not
contain honest peers.

C. Protocol Description

We describe the DiceMix protocol in Algorithms 1 and 2.

The black code is the basic part of the protocol; the blue
code handle several concurrent runs offline peers.

1) Single Run of the Protocol (Black Pseudocode): The
protocol starts in START-DICEMIX(), which receives as input
a set of other peers P , our own identity my, an array VK[] of
verification keys of the other peers, our own signing key sk ,
and a predetermined session identifier sid .

A single run of DiceMix consists of four rounds. (RUN())
The first three rounds are key exchange (KE), publishing of
commitments to the DC-net messages (CM) and publishing
of such DC-net messages (DC). The fourth round consists on
accepting the result in the absence of disruptions (CF) or the
publishing of secret keys to discover the misbehaving peer
(SK).

The first round (KE) just uses the NIKE to establish pairwise
symmetric keys between all peers (DC-KEYS()). Then each
peer can derive the DC-net pads from these symmetric keys
(DC-PAD()).

In the second round (CM), each peer commits to her DC-
net vector using hash function H; adding randomness is not
necessary, because we assume that the input messages contained
in the DC-net vector have sufficient entropy. The commitments
are opened in the third round (DC). They are non-malleable
and their purpose is to prevent a rushing attacker from letting
his DC-net vector depend on messages by honest peers, which
will be crucial for the agreement property. After opening the
commitments, every peer has enough information to solve the
DC-net and extract the list of messages by solving the power
sums (DC-RES()).

Finally, every peer checks whether her input message is
in the result of the DC-net. Agreement will ensure that either
every peer finds her message or no honest peer finds it.

If a peer finds her message, she proceeds to the confirmation
subprotocol. Otherwise, she outputs her secret key. In this case,
every other peer publishes her secret key as well, and all peers
can replay each other protocol messages for the current run.
This will expose the misbehaving peer and honest peers will
exclude him from the next run.

2) Concurrent Runs of the Protocol (Blue Pseudocode):
A simple but inefficient way of having several runs is to start
a single run of the protocol and only after misbehavior is
detected, start a new run without the misbehaving peer. This
approach requires 4 + 4f rounds, where f is the number of
disruptive peers (assuming that CONFIRM() takes one round).
To reduce the number of communication rounds to 4 + 2f ,
we deploy concurrent runs as exemplified in Fig. 2. We need
to address two main challenges. First, when a peer disrupts
the DC-net phase of run i, it must be possible to “patch” the
already started run i+1 to discard messages from misbehaving

peers in run i. For that, run i must reach the last phase (SK or
CF) before run i+ 1 reaches DC phase.

Until run i+1 sends the DC message, it can can be patched
as follows. In the DC phase of run i+1, honest peers broadcast
not only their DC-net messages, but also in parallel they reveal
(RV) the symmetric keys shared in run i + 1 with malicious
peers detected in run i. In this manner, DC-net messages can
be partially unpadded, effectively excluding misbehaving peers
from run i + 1. We note that, a peer could reveal wrong
symmetric keys in the RV step. This, however, leads to wrong
output of the DC-net, which is then handled by revealing secret
keys in round i+ 1. Moreover, publishing partial symmetric
keys does not compromise sender anonymity since messages
remain partially padded with symmetric keys shared between
the honest peers.

3) Handling Offline Peers (Blue Pseudocode): So far
we have only discussed how to ensure termination against
actively disruptive peers who send wrong messages. However,
a malicious peer can also just send no message at all. This
case is easy too handle in our protocol. If a peer p has not
provided a (valid) broadcast message to the bulletin board (in
time), all honest peers will agree on that fact, and exclude the
unresponsive peer. In particular, it is easy to see that all criteria
specifying whether a message is valid will evaluate the same
for all honest peers (if the bulletin board is reliable, which we
assume for termination).

Observe that for missing messages from the first two
broadcasts (KE and CM), the current run can be continued.
Peers not sending KE are just ignored in the rest of the run;
peers not sending CM are handled by revealing symmetric keys
exactly as done with concurrent runs. Observe that this crucially
ensures that even in the presence of passively disrupting peers,
only 4 + 2f communications rounds are necessary.

D. Security and Correctness Analysis

In this section, we discuss why DiceMix achieves all
required properties, namely the security properties sender
anonymity and termination as well as the guarantees validity
and agreement that the application may rely on.

1) Sender Anonymity: Consider a protocol execution in
which a honest peer p succeeds with message mp and final
peer set P , and let p′ ∈ P be another honest peer. We have to
argue that the attacker cannot distinguish whether mp belongs
to p or p′.

Since both p and p′ choose fresh messages mp, mp′ ,
and fresh NIKE key pairs in each run, it suffices to con-
sider only the successful run i. Since p succeeds in run i,
the call to CONFIRM(i, P,M) has succeeded. By the “cor-
rect confirmation” property of CONFIRM(. . .), p′ has started
CONFIRM(i, P,M) in the same communication round as p. By
construction of the protocol, this implies two properties about
p′: (i) p′ will not reveal her secret key in round SK. (ii) peer
p′ assumes that p is not excluded in run i, and thus has not
revealed the symmetric key shared with p in round RV. (Part
(ii) is only relevant in the concurrent variant of the protocol.)

As the key exchange scheme is secure in the CKS model
and the public keys are authenticated using signatures, the

7

Algorithm 1 DiceMix: Main Protocol Run
procedure START-DICEMIX(P,my, VK[], sk, sid)

sid ′ ··= (sid , P, VK[])
if my ∈ P then

fail ”cannot run protocol with myself”
RUN(P,my, VK[], sk, sid ′, 0)

procedure RUN(P,my, VK[], sk, sid , run)
if P = ∅ then

fail ”no honest peers”
. Exchange pairwise keys
(NPK[my], NSK[my]) ··= NIKE.KeyGen(my)
sidH ··= H((sid, sid , P ∪ {my}, NPK[], run))
broadcast (KE, NPK[my], Sign(sk , (NPK[my], sidH)))
receive (KE, NPK[p], σ[p]) from all p ∈ P

where NIKE.ValidatePK(NPK[p])
∧ Verify(VK[p], σ[p], (NPK[p], sidH))

missing Poff do
P ··= P \ Poff . Exclude offline peers

. Create fresh message to mix and prepare DC-net
m ··= GEN()
K[] ··= DC-KEYS(P, NPK[],my, NSK[my], sidH)
DC[my][] ··= DC-VECTOR(P, K[],m)

Pexcl ··= ∅ . Malicious (or offline) peers for later exclusion
. Commit to DC-net vector
COM[my] ··= H((dc, DC[my]))
broadcast (CM, COM[my], Sign(sk , (COM[my], sidH)))
receive (CM, COM[p], σ[p]) from all p ∈ P

where Verify(VK[p], σ[p], (COM[p], sidH))
missing Poff do . Store offline peers for exclusion

Pexcl ··= Pexcl ∪ Poff

if run > 0 then
. Wait for prev. run to notify us of malicious peers
PexclPrev ··= wait
Pexcl ··= Pexcl ∪ PexclPrev

. Collect shared keys with excluded peers
for all p ∈ Pexcl do

Kexcl[my][p] ··= K[p]
. Start next run (in case this one fails)
P ··= P \ Pexcl

next ··= fork RUN(P,my, VK[], sk , sid ′, run + 1)

. Open commitments and keys with excluded peers
broadcast (DC, DC[my][], Kexcl[my][], Sign(sk , Kexcl[my][]))
receive (DC, DC[p][], Kexcl[p][], σ[p]) from all p ∈ P

where H((dc, DC[p][])) = COM[p]
∧ {p′ : Kexcl[p][p

′] 6= ⊥} = Pexcl[p]
∧ Verify(VK[p], Kexcl[p][], σ[p])

missing Poff do . Abort and rely on next run
return RESULT-OF-NEXT-RUN(Poff, next)

. Check if our output is contained in the result
M ··= DC-RES(P ∪ {my}, DC[][], Pexcl, Kexcl[][])
if m ∈M then

Pmal ··= CONFIRM(i, P,M,my, VK[], sk, sid)
if Pmal = ∅ then . Success?

abort next
return m

else
broadcast (SK, NSK[my]) . Reveal secret key
receive (SK, NSK[p]) from all p ∈ P

where NIKE.ValidateKeys(NPK[p], NSK[p])
missing Poff do . Abort and rely on next run

return RESULT-OF-NEXT-RUN(Poff, next)
. Determine malicious peers using the secret keys
Pmal ··=BLAME(NPK[], NSK[], DC[][], sidH, Pexcl, Kexcl[][])

return RESULT-OF-NEXT-RUN(Pmal, next)

Algorithm 2 DiceMix: Sub-procedures
procedure DC-VECTOR(P, K[],m)

. DC-net
for s ··= 1, . . . , |P |+ 1 do

DCMY[s] ··= (m)s + DC-PAD(P, K[], s)
return DCMY[]

procedure DC-KEYS(P, NPK[],my, nsk, sidH)
for all p ∈ P do

K[p] ··= NIKE.SharedKey(my, p, nsk, NPK[p], sidH)
return K[]

procedure DC-PAD(P, K[], s)
return

∑
p∈P sgn(my− p) · G((K[p], s)) . in F

procedure DC-RES(Pall, DC[][], Pexcl, Kexcl[][])
for s ··= 1, . . . , |P |+ 1 do

. Pads cancel out for honest peers
S[s] ··=

∑
p∈Pall

DC[p][s]

. Also remove pads for excluded peers
S[s] ··= S[s]−

∑
p∈Pall

DC-PAD(Pexcl, Kexcl[p], s)

M[] ··= Solve(∀s ∈ {1, . . . , |P |+ 1}. S[s] =
∑|P |+1

i=1 M[i]s)
return Set(M[]) . Convert M[] to an (unordered) set

procedure BLAME(NPK[], NSK[], DC[][], sidH, Pexcl, Kexcl[][])
Pmal ··= ∅
for all p ∈ P do

K′[] ··= DC-KEYS(P, NPK[], p, NSK[p], sidH)

. Purported m of p
m′ ··= DC[p][1]− DC-PADS(K[], 1)

. Replay DC-net message of p
DC′[] ··= DC-VECTOR(K′[],m′)
if DC′[] 6= DC[p][] then

Pmal ··= Pmal ∪ {p} . Exclude inconsistent p
. Check if p published correct symmetric keys
for all pexcl ∈ Pexcl do

if Kexcl[p][pexcl] 6= K′[pexcl] then
Pmal ··= Pmal ∪ {p}

return Pmal

procedure RESULT-OF-NEXT-RUN(PexclNext, next)
. Hand over to next run and notify of peers to exclude
notify next of PexclNext

. Return result of next run
result ··= join next
return result

attacker cannot distinguish the random DC-nets derived from
the symmetric key between p and p′ from random pads.

Thus, after opening the commitments on the pads, p
has formed a proper DC-net with at least p′. The security
guarantee of original Chaum’s DC-nets [14] implies that the
attacker cannot distinguish mp from mp′ before the call
to CONFIRM(i, P,M). Now, observe that the execution of
subprotocol CONFIRM(i, P,M) does not help in distinguishing,
since all honest peers call it with the same arguments, which
follows by the “correct confirmation” property as we have
already argued. This shows sender anonymity.

2) Validity: To show validity, we have to show that if honest
peer p calls CONFIRM(i, P,M) with message set M and final
peer set P , then (i) for all honest peers p′ and their messages
mp′ , we have mp′ ∈M , and (ii) we have |M | = |P |.

For the first part of validity, recall that we assume the
bulletin board to be honest for validity, so every peer receives

8

the same broadcast messages. Under this assumption and the
assumption that the signature scheme is unforgeable, a code
inspection shows that after receiving the DC message, the entire
state of a protocol run i is the same for every honest peer, except
for the signing keys, the own identity my, and the message m
generated by GEN(). From these three items, only m influences
the further state and control flow, and it does so only in the
check m ∈M at the end of RUN(. . .).

We now show as intermediate step that in every run i, the
condition m ∈M (in the last part of RUN(. . .)) is either true
for all honest peers or is false for all honest peers. Note that
also M is entirely determined by broadcast messages and thus
the same for all honest peers. Let p and p′ be two honest peers
with their input messages mp and mp′ in run i, and assume for
contradiction that the condition is true for p but not for p′, i.e.,
mp ∈M but mp′ /∈M . This implies that at least one malicious
peer a has committed to an ill-formed DC-net vector in run i,
i.e., a vector which is not of the form (ma,m

2
a, . . . ,m

n
a) with

n ≥ 2. Since mp ∈M , this ill-formed vector left the message
mp intact. This implies that the attacker has information about
the other DC-net vectors. A simple algebraic argument shows
that even for the second power, it is not feasible to come up
with additive offset to the power sum that changes some of the
encoded messages but leaves others intact; to change some mp′

to m′p + δ, knowledge of (mp′ + ∆)2 −m2
p′ = 2mp′∆ + ∆2

and thus knowledge of mp′ is necessary.

As the message H(dc, DC[]) implements a hiding, binding
and non-malleable commitment on DC[] (recall that adding
randomness is not necessary because there is sufficient entropy
in DC[]), it is infeasible, even for a rushing malicious peer
a, to have committed to an ill-formed vector that leaves mp

intact. This is a contradiction, and thus the condition m ∈M
evaluates equivalently for all honest peers.

Now observe that the condition m ∈M determines whether
CONFIRM(. . .) is called. That is, whenever CONFIRM(i, P,M)
is called by some honest peer p, then mp′ ∈M for all honest
peers p′. This shows the first part of validity.

For the second part of validity (|M | = |P |), observe that in
the beginning of an execution and whenever P changes, a new
run with |P | peers is started, each of which submits exactly
one message. This shows validity.

3) Agreement: To show agreement, we have to show that for
all runs i, if one honest peer p calls CONFIRM(i, P,M) in some
round, then all honest peers p′ call CONFIRM(i, P,M) in the
same round. This follows from validity. By the first part of va-
lidity, we know that some honest peer calls CONFIRM(i, P,M),
then mp′ ∈M for all honest peers p′ in run i. By construction
of the protocol, mp′ ∈ M this is exactly the condition that
determines whether p′ calls CONFIRM(i, P,M). Thus all honest
peers p′ call CONFIRM(i, P,M) in the same round.

4) Termination: Now, we show why the protocol terminates
for every honest peer. We first show that at least one malicious
peer is excluded in each failed run. We have already argued
above (for validity) that in the presence of an honest bulletin
board, all honest peers take the same control flow decision
(whether to call CONFIRM(. . .) or not at the end of each run).
We can thus distinguish cases on this control flow decision.

If CONFIRM(. . .) is called in a failed run, then it returns
the same non-empty set of malicious peers (by the “correct
exclusion” property), and those peers will be excluded by
every honest peer. If CONFIRM(. . .) is not called in a run,
then there must have been disruption by at least one malicious
peer. Replaying all protocol messages of this run (with the
help of then published secret keys) clearly identifies at least
one malicious peer; and since all honest peers run the same
code (BLAME(. . .)) on the same inputs to do so, they will all
exclude the same set of malicious users.

We have shown that in each failed run, all honest peers
exclude the same non-empty set of malicious peers. Eventually,
we will reach one of two cases. In the first case, the number of
unexcluded peers will drop below 2; in that case the protocol is
allowed to fail and thus there is nothing to show. In the second
case, we will reach a run in which all peers behave honestly
(whether they are controlled by the attacker or not). This run
will successfully terminate, which shows termination.

E. Variants of the Protocol

The design of DiceMix follows the P2P paradigm, and
consequently, we do not expect the bulletin board to implement
any real functionality or perform any computation. The bulletin
board is a simple broadcast mechanism and may be replaced
by a suitable reliable broadcast protocol [47].

However, if one is willing to require a more sophisticated
bulletin board with dedicated functionality, the efficiency of
DiceMix can be improved. (In that case, calling it a server
may be more appropriate; we stick with bulletin board for
simplicity.) It is important to note that even a dedicated bulletin
board is still only trusted for termination and not for anonymity.

1) Dropping the Commitment Phase: Recall that the purpose
of the non-malleable commitments is to prevent malicious peers
from choosing their DC vectors depending on the DC vectors
of the honest peers.

Assume that the bulletin board supports secure channels,
and broadcasts the messages in the DC round only after all
peers have submitted their messages. Then independence is
ensured with a honest bulletin board, and we can drop the CM
(commitment) round. This is secure because the independence
of the DC vectors is only necessary for termination but not
for anonymity, and we trust the bulletin board for termination
already. A serial protocol execution (without concurrency) will
then follow the pattern ”KE (DC CF/SK)+”, where the plus
indicates that these phases are performed once or several times.
With the help of concurrency, we can run the key exchange (KE)
concurrently to the confirmation phase (CF/SK), and reduce the
number of rounds to 3 + 2f (assuming that the confirmation
phase takes one round.). An example run is depicted in Fig. 3.

Note that a revelation of symmetric keys (RV in the original
protocol) will not be necessary anymore, because the malicious
peers to exclude are determined before the DC round of second
run (see Section IV-C2 for an explanation of RV).

a) Bulletin Board Performs Expensive Computation:
Moreover, a dedicated bulletin board can perform the expensive
computation of solving the equation system involving the power
sums, and broadcast the result instead of the DC vectors. The

9

Runs Communication rounds
1 KE DC SK

2 KE DC CF

3 KE DC CF

4 KE

Fig. 3: Example for a DiceMix execution with a dedicated
bulletin board. Run 1 fails due to DC-net disruption. Run
2 fails to confirm. Run 3 finally succeeds and run 4 is then
aborted. Rows represent protocol runs and columns represent
communication rounds. The blue arrows depict dependencies
between runs, i.e., some run informs the next run about the
peers to exclude. KE: Key exchange; CM: Commitment; DC:
DC-net; SK: Reveal secret key; CF: Confirmation.

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
e
c
)

Number of nodes

Running time
Max and min

Fig. 4: Running Time (average and minimum/maximum
over all peers). All peers have a bandwith of 10 Mbit/s; the
bulletin board has a total of 1 Gbit/s; all links have 50 ms
latency.

bulletin board would then also be responsible for handling
inconsistent messages in the SK run; it would then announce
the malicious peers after having received all secret keys. This
saves communication in the rounds DC and SK. Again, security
is preserved, because we trust bulletin board for termination.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of DiceMix.
We first analyze the communication costs, and then evaluate
the running time with the help of a prototype implementation.
Our results show that DiceMix is practical and outperforms
existing solutions.

Using concurrent runs, DiceMix needs (c+ 3) + (c+ 1)f
communication rounds, where f is the number of peers actually
disrupting the protocol execution, and c is the number of rounds
of the confirmation subprotocol. In the case c = 1 such as in
our Bitcoin mixing protocol (Section VI), DiceMix needs just
4 + 2f rounds.

The communication costs per run and per user are dominated
by the broadcast of the DC-net array DC[my][] of size n·|m| bits,
where n is the number of peers and |m| is the length of a
mixed message. All three other broadcasts have constant size
at any given security level.

A. Prototype Implementation

We have developed a proof-of-concept implementation of
DiceMix based on an existing implementation of the Dissent
protocol [17]. This unoptimzed implementation encompasses
the complete functionality to enable testing a successful run of
DiceMix without disruptions.

The implementation is written in Python and uses OpenSSL
for ECDSA signatures on the secp256k1 elliptic curve (as
used in Bitcoin) at a security level of 128 bits. We use a Python
wrapper for the Pari-gp library [33] to find the roots of the
power sum polynomial.

1) Testbed: We tested our DiceMix implementation in
Emulab [52]. Emulab is a testbed for distributed systems
that enables a controlled environment with easily configurable
parameters such as network topology or bandwidth of the
communication links. We simulated a network setting in which
all peers (10 Mbit/s) have pre-established TCP connections to
a bulletin board (1 Gbit/s); all links had a delay of 50 ms. We
used different Emulab machines (2.2–3.0 GHz) to simulate the
peers; note that the slowest machine is the bottleneck due to
the synchronization enforced by the broadcasts.

We ran the protocol with a varying number of peers, ranging
from 5 to 50. Each peer had as input for the mixing a 160-bit
message (e.g., a Bitcoin address).

2) Results: First, we measured wall-clock time, averaged
over all peers. As shown in Fig. 4, we observe that even with
50 participants, DiceMix runs in less than 8 seconds.

Second, we measured computation time; the results are
depicted in Fig. 5. We considered the average total computation
time spent by a peer (purple line), and the average computation
time excluding solving the equation system involving the power
sums (i.e., green line).

3) Optimization: We observe that solving the equation
system is quite expensive, namely about 2 seconds for 50 peers.
To demonstrate that this is mostly due to lack of optimization,
we developed an optimized stand-alone application for this
step in C++ using the FLINT number theory library [29],
which provides a highly optimized implementation of the
Kaltofen-Shoup algorithm for polynomial factorization over
finite fields [32]. Our optimized application solves the equation
system involving the power sums in about 0.15 seconds for

 0

 1

 2

 3

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
e

c
)

Number of nodes

Total computation
No solving equation

Fig. 5: Total computation time (average over peers). The
purple line shows the total computation time. The green line
shows the computation time without solving the equation system
involving the power sums.

10

50 peers on a 2.10 GHz (Intel Core i7-4600U) machine, using
6 MB of DDR3-1600 RAM. This shows that optimizations can
reduce the running time of the protocol further.

4) Conclusion: The experimental results show that even
our unoptimized implementation of DiceMix scales to a
large number of peers and outperforms state-of-the-art P2P
mixing solutions such as CoinShuffle [45] and Dissent [17]
considerably. In comparison, CoinShuffle (as an optimized
variant of the Dissent shuffle protocol) needs slightly less than
3 minutes to complete a successful run of the P2P mixing
protocol in a very similar test environment with 50 peers.

VI. EFFICIENT COIN MIXING IN BITCOIN

Several different heuristics to link Bitcoin payments sent
or received by a particular user have been proposed in the
literature [1], [3], [34], [40], [44], [46]. Ultimately, crypto-
currencies such as Bitcoin using a public Blockchain may in fact
provide less anonymity than traditional banking. Coin mixing
has emerged as a technique to overcome this problem while
maintaining full compatibility with current Bitcoin protocol.

A promising solution in this direction is CoinShuffle [45],
a P2P mixing protocol based on a mixnet run by the peers
to ensure the unlinkability of input and output accounts in
a jointly created mixing transaction (a so-called CoinJoin
transaction [37]). However, a run with a decent anonymity set
of n = 50 peers takes about three minutes to complete [45], as-
suming that every peer is honest. In the presence of f disruptive
peers aiming at impeding the protocol, O(nf) communications
rounds are required, and most of them inevitably taking longer
due to the disruptive peers delaying their messages intentionally.
For say f = 10 disrupting peers, the protocol needs more than
30 minutes to succeed, which arguably prohibits a practical
deployment of CoinShuffle. As a consequence, we lack a coin
mixing protocol for crypto-currencies that is efficient enough
for practical deployment.

We propose CoinShuffle++, a highly efficient coin mixing
protocol resulting from the application of DiceMix to the Bit-
coin setting. In the following, we first give some background on
Bitcoin. Then, we describe additional design goals when using
P2P mixing protocol in payment systems, and then describe in
detail our protocol. Finally, we show the experimental results
from our evaluation and finally compare CoinShuffle++ with
other available proposals to overcome the anonymity problem
in Bitcoin.

A. The Bitcoin System

Bitcoin [42] is a crypto-currency run by a P2P network. An
account in the Bitcoin system is associated with an ECDSA
key pair; accounts are publicly identified by a 160-bit hash of
the verification key, called address. Every peer can create an
arbitrary number of accounts by creating fresh key pairs.

A peer can spend coins stored at her account by creating
and signing Bitcoin transactions. In its simplest form, a Bitcoin
transaction is composed by an input account, an output account
and the amount of coins to be transferred from the input to the

output account.5 For the transaction to be successful, it must
be signed with the signing key associated to the input account.

Bitcoin transactions can include multiple input and output
accounts to spend coins simultaneously. In this case, the
transaction must be signed with the signing keys associated to
each of the input accounts.

B. Security Goals

Apart from the general security goals for a P2P mixing
protocol (see Section II-F), the protocol must guarantee correct
balance, a security property of interest when the P2P mixing
protocol is leveraged to mix output accounts that enable privacy
preserving transactions in payment systems.

a) Correct Balance: If the P2P mixing protocol succeeds
for peer p, then balance of p’s output account is at least β
(ignoring transaction fees), where β is mixing amount in the
P2P mixing protocol. In negative case, the total balance of the
accounts of p is not reduced (ignoring transaction fees).

C. The CoinShuffle++ Protocol

CoinShuffle++ leverages DiceMix to perform a Bitcoin
transaction where the input and output accounts for any given
(honest) peer cannot be linked. In particular, CoinShuffle++
creates a fresh pair of signing-verification Bitcoin keys and
returns the verification key to implement GEN().

Then, for the confirmation subprotocol CONFIRM(. . .),
CoinShuffle++ uses CoinJoin [37], [39] to perform the actual
mixing. A CoinJoin transaction allows a set of peers to mix their
coins without the help of a third party. In such a transaction,
peers set their current Bitcoin accounts as input and a mixed
list of fresh Bitcoin accounts as output. Crucially, peers can
verify whether the thereby constructed transaction transfers the
correct amount of coins to their fresh output account and only
if all peers agree and sign the transaction, it becomes valid. So
in the case of CoinShuffle++, the explicit confirmation provided
by DiceMix is a list of valid signatures, one from each peer,
on the CoinJoin transaction.

Note that DiceMix guarantees that everybody receives the
correct list of outputs accounts in the confirmation subprotocol.
So a peer refusing to sign the CoinJoin transaction can safely
be considered malicious and removed. This is a crucial property
for an anonymous CoinJoin-based approach, otherwise a single
malicious peer can refuse to sign the transaction and thus
mount a DoS service on all other peers who cannot exclude
the malicious peer if not convinced of his guilt.

We define CoinShuffle++ in Algorithm 3. There, we denote
by CoinJoinTx(VKin[], VKout[], β) a CoinJoin transaction that
transfers β bitcoins from every input to every output account
(where β is a pre-arranged parameter). Moreover, we denote by
Submit(tx, σ[]) the submission of tx including all signatures
to the Bitcoin network.

5Technically, there is no notion of an input account but most of the inputs
can be associated with addresses (accounts). We ignore those details because
they are not relevant to our discussion.

11

1) Security Analysis: Observe that CoinShuffle++ adheres
to the requirements specified in Section IV-B. Thus, sender
anonymity and termination in CoinShuffle++ are immediate.
(We refer to [39] for a detailed taint-based analysis on the
privacy implications of CoinJoin-based protocol providing
sender anonymity.) Correct balance is enforced by the CoinJoin
paradigm: by construction, a peer signs only transactions that
will transfer his funds from her input address to her output
address.

2) Performance Analysis: In our performance analysis of
DiceMix (Section V), GEN() creates a new ECDSA key pair
and CONFIRM(. . .) obtains ECDSA signatures from all peers
(using their initial ECDSA key pairs) on a bitstring of 160
bits. This is almost exactly CoinShuffle++, so the performance
analyses of DiceMix carries over to CoinShuffle++.

3) Practical Considerations: There are several considera-
tions when deploying CoinShuffle++ in practice. First, Bitcoin
charges transactions with a small fee to prevent DoS attacks.
Second, the mixing amount β must be the same for all peers
but peers typically do not hold the exact mixing amount in
their input Bitcoin account. Finally, after honestly performing
the CoinShuffle++ protocol, a peer could spend her bitcoins in
the input account before the CoinJoin transaction is confirmed,
in an attempt of double-spending. All these challenges are easy
to overcome. We refer the reader to the literature on CoinJoin
based mixing, e.g., [37], [39], [45], for details.

a) Compatibility and Extensibility: Since CoinJoin trans-
actions work in the current Bitcoin network, CoinShuffle++ is
immediately deployable without any change to the system.

Moreover, the fact that DiceMix is generic in the
CONFIRM(. . .) function allows to define variants of Coin-
Shuffle++ to support a wide range of crypto-currencies and
signature algorithms, including interactive signature protocols.
cryptocurrencies.

For example, the integration of Schnorr signatures is planned
in an upcoming Bitcoin software release [8]. This modification
will enable aggregate signatures using a interactive two-round
protocol among the peers in a CoinJoin transaction [38]. Given
that signatures are often the largest individual part of the
transactions, this enhancement greatly reduces the size of
transactions and thus the transaction fee, thereby making mixing
using CoinJoin transactions even cheaper.

Algorithm 3 CoinShuffle++
procedure GEN()

(vk , sk) ··= AccountGen() . Stores sk in the wallet
return vk

procedure CONFIRM(i, P,my, VKin[], sk in, VKout[], sid)
tx ··= CoinJoinTx(VKin[], VKout[], β)
σ[my] ··= Sign(sk in, tx)
broadcast σ[my]
receive σ[] from all p ∈ P

where Verify(VKin[p], σ[p], tx)
missing Poff do . Peers refusing to sign are malicious

return Poff

Submit(tx, σ[])
return ∅ . Success!

VII. RELATED WORK IN CRYPTO-CURRENCIES

In the following we overview the literature on privacy-
preserving protocols for crypto-currencies. Related work for
P2P mixing protocols is discussed throughout the paper.

A. Privacy-preserving Crypto-currencies

Zerocoin [41] and its follow-up work Zerocash [4], whose
implementation Zcash is currently in an alpha stage [54], are
crypto-currencies protocols that provide anonymity by design.
Although these solutions provide strong privacy guarantees, it
is not clear whether Zcash will see widespread adoption, in
particular given its reliance on a trusted setup due to the use
of zkSNARKS.

CoinShuffle++ builds on top of Bitcoin, and thus can be
deployed immediately and seamlessly without requiring any
changes to the Bitcoin protocol. Bitcoin is by far the most
widespread crypto-currency and will most probably retain this
status in the foreseeable future, so users are in need of solutions
enhancing privacy in Bitcoin.

The CryptoNote design [51] relies on ring signatures to
provide anonymity for the sender of a transaction. In contrast to
CoinShuffle++, an online mixing protocol is not necessary and
a sufficient anomyity set can be created using funds of users
currently not online. However, this comes with two important
drawbacks for scalability.

First, CryptoNote requires each transaction to contain a
ring signature of size O(n), where n is the size anonymity set,
whereas our approach based on CoinJoin needs only constant
space per user. Storing the ring signatures requires a lot of
precious space in the blockchain, and verifiying them puts a
large burden on all nodes in the currency network. (In other
words, the advantage of CoinShuffle++ is that it moves the
anonymization work to an online mixing protocol, which is
independent of the blockchain.)

Second, CryptoNote is not compatible with pruning, a
feature supported e.g., by the Bitcoin Core client [7]. Pruning
reduces the storage requirements of nodes drastically by
deleting old blocks and spent transaction once verified. This is
impossible in CryptoNote because anonymity ensures that it is
not entirely clear whether a transaction has been spent or not.
A CoinJoin-based approach such as CoinShuffle++ does not
suffer from this problem and is compatible with pruning.

B. Centralized Mixing Services

Centralized mixing services [9] can be used to unlink a
bitcoin from the bitcoin’s owner: several owners transfer their
coins to the mixing service who returns it to the owners at a
fresh addresses. The main advantage of a centralized approach
is that it scales well to a large anonymity sets. However, by
using these services naively, a user must fully trust the mix:
First, anonymity is restricted towards external observers, i.e.,
the mixing service itself can still determine the owner of a
bitcoin. Second and even more important, the users have to
transfer their funds to the mixing service who could just steal
them by refusing to give them back.

Mixcoin [10] does not solve the first problem while it
mitigates the second problem by holding the mix accountable in

12

case it steals the coins (but theft is still possible). Blindcoin [50]
improves upon Mixcoin on that the mix does not learn the
owner of a bitcoin. Moreover, the mix is also held accountable
in case it steals the coins, but theft of coins is still possible.

Blindly Signed Contracts [31] proposes a centralized
mechanism based on the combination of blind signatures and
smart contract to solve both mentioned challenges, i.e., theft
and anonymity. However, the adoption of this approach requires
a protocol change, which can be implemented as a soft-fork
in the current Bitcoin blockchain. Moreover, this mechanism
requires four Bitcoin transactions per peer, three of them to be
confirmed sequentially. Even when using potentially risky one-
block confirmations, this implies that mixing takes 30 minutes
on average and transaction fees for four transactions per peer.
The follow-up work TumbleBit [30] proposes a mechanism
fully compatible with Bitcoin but still requires at least two
blocks to be confirmed sequentially.

CoinShuffle++ uses a single transaction for all peers and
thus requires much less time and fees from the peers.

C. Other P2P Approaches

CoinParty [55] is a protocol where a set of mixing peers
is used to mix coins from the users. In this approach, they
assume that 1/3 of the mixing parties are honest. However,
this trust assumption is not in line with the Bitcoin philosophy,
and much worse, it is unclear how to realize it in a P2P setting
without strong identities, where Sybil attacks are easily possible.
CoinShuffle++, instead, does not make any trust assumption
on the mixing participants, except that there must be two
honest peers, which is fundamental requirement for any protocol
providing anonymity.

D. Sybil-Resistant Approaches

Xim [6] improves on its related previous work [3] in that
it uses a fee-based advertisement mechanism to pair partners
for mixing, and provides evidence of the agreement that can
be leveraged if a party aborts. Even in the simple case of a
mixing between two peers, Xim requires to publish several
Bitcoin transactions in the Bitcoin blockchain, what takes on
average at least 10 minutes for each transaction.

CoinShuffle++ instead requires to submit a single transac-
tion to the Bitcoin blockchain independently on the number
of peers. Moreover, although CoinShuffle++ does not prevent
malicious peers from disrupting the protocol, it provides a
mechanism to identify the misbehaving peer so that it can be
excluded and termination is ensured.

VIII. A DEANONYMIZATION ATTACK ON
STATE-OF-THE-ART P2P MIXING PROTOCOLS

In this section, we show a deanonymization attack on state-
of-the-art P2P mixing protocol.

At the core of the problem is handling of passive disruption,
i.e., peers that appear to be offline. However, it turns out that
the ability to finish the protocol without a particular peer p is
a serious problem for this peer’s anonymity. In fact, we will
describe an attack enabling a network attacker to break the
anonymity of peer p!

p

BB

M‘ M

Fig. 6: A Protocol Under Attack. Peer p is partitioned from
the bulletin board. Dashed rectangles indicate the message sets
of the contained peers.

This is not at all a problem if peer p is proven to be an
active disruptor and thus malicious. However, sacrificing the
anonymity of p is a serious issue and renders any protocol
insecure if p just appears to be offline. Peer p could in fact
be honest, because there is no “smoking gun” that allows the
other peers to conclude that p is malicious. To the best of our
knowledge, this security problem has been overlooked in the
literature so far.

A. Example: A Deanonymization Attack on Dissent

We exemplify the attack on the Dissent shuffle protocol [17],
[49].6 In the last communication round of the Dissent shuffle
protocol, every peer publishes a decryption key. All decryption
keys taken together enable the peers to decrypt anonymized
ciphertexts, resulting in the final set M of anonymized messages.
(The rest of the protocol is not relevant for our attack.) The
attack on the shuffle protocol now proceeds as follows (Fig. 6):

1) The network attacker does not interfere with the protocol
until the last communication round. In the last round the
attacker partitions the network in a part with only one
honest peer p and a part with the remaining peers. Conse-
quently, the last protocol message by peer p (containing
her decryption key) does not reach the other peers. As the
attacker has learned all decryption keys (including that of
p), he can decrypt the final set of messages M but nobody
else can.7 However, anonymity is not broken so far.

2) The remaining peers must eventually conclude that peer
p is offline and exclude him; otherwise they will not
be able to continue the protocol, because they cannot
trust that p will ever be reachable again. The strategy by
which Dissent provides termination in such a situation,
is that the remaining peers will now attempt a second
run the protocol without peer p. In this second run, the
remaining peers resend their messages used in the first
run [17, Section 5.4]. The attacker does not interfere with

6There are several protocols named Dissent. First, there is a P2P mixing
protocol proposed by Corrigan-Gibbs and Ford [17] and formally proven secure
by Syta et. al. [49]. Second, there is protocol [53] in a client/server setting,
which requires trust in one of several servers and is consequently not relevant
in context. The former (P2P) protocol by Corrigan-Gibbs and Ford [17] has
two variants, a shuffle protocol and a bulk protocol. The shuffle protocol is
supposed to provide anonymity but is restricted to all peers having a message
of the same size, whereas the bulk protocol does not share this restriction.
When we say Dissent, we always mean the shuffle protocol [17, Section 3].

7Dissent has the property that also a passive network observer (not
participating in the protocol) can reconstruct M .

13

this second protocol run, and so the run will eventually
succeed with a final message set M ′.

3) Observe that M ′ \M = {mp}, since p is the only peer
present in the first run but not in the second. This breaks
anonymity of p.

The issue on the formal side is an arguably too weak security
definition. The core of the Dissent protocol [17], [49] does not
provide termination on its own but just a form of accountability,
which states that at least one active disruptor can be exposed
in every failed run of the protocol. The underlying idea is to
use a wrapper protocol that can provide termination by starting
a new run of Dissent without the exposed disruptor, after a run
has failed. In this new run, the peers resend their messages [17,
Section 5.4], making the whole protocol vulnerable to the attack
described above.

The formal analysis of the Dissent however does not cover
the wrapper protocol but considers only a single run, and
correctly establishes anonymity and accountability for a single
run. It has been overlooked that anonymity is lost under
sequential composition of several Dissent runs using the same
input messages, even though this composition is exactly what
the wrapper protocol does to ensure successful termination.

Interestingly, Corrigan-Gibbs and Ford [17] acknowledge
and mention the problem that the last protocol message may
be withheld and thus some peer (or the network attacker) may
learn the result of the protocol while denying it to others [17,
Section 5.5]. However, their discussion is restricted to reliability
and fails to identify the consequences for anonymity.

B. Generalizing the Attack

The underlying reason of this intersection-like attack is a
fairness issue: the attacker, possibly controlling some malicious
peers, can learn (parts of) the result M of an protocol execution
while denying M to the other peers. If now some peer p appears
offline, e.g., because the attacker blocks network messages, the
remaining peers have to finish the protocol without p, resulting
in a message set M ′, which in contrast to M does not contain
mp. Then the attacker has learned that mp belongs to p.

Since fairness is a general problem in cryptography without
honest majority, it is not surprising that the attack can be
generalized. In Appendix A, we show a generic attack that
breaks anonymity for any P2P mixing protocol, which provides
termination and supports arbitrarily chosen input messages.

IX. CONCLUSIONS

In this work we present DiceMix, a P2P mixing protocol
based on DC-nets that enable participants to anonymously
publish a set of messages ensuring sender anonymity and
termination. DiceMix avoids slot reservation and still ensures
that no collisions occur, not even with a small probability.
This results in DiceMix requiring only 4 rounds independently
on the number of peers, and 4 + 2f rounds in the presence
of f misbehaving peers. We have implemented DiceMix and
showed its practicality to enable privacy preserving operations
in several scenarios.

We use DiceMix to implement CoinShuffle++, a practical
decentralized coin mixing for Bitcoin. Our evaluation results

show that CoinShuffle++ is a promising approach to ensure
sender anonymity in Bitcoin requiring no change in the current
Bitcoin protocol.

REFERENCES

[1] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in FC’13.

[2] Anonymity.Online, “AN.ON,” https://anon.inf.tu-dresden.de/.
[3] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better. how to

make Bitcoin a better currency,” in FC’12.
[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza, “Zerocash: Decentralized anonymous payments from
Bitcoin,” in S&P’14.

[5] O. Berthold, H. Federrath, and S. Köpsell, “Web mixes: A system for
anonymous and unobservable internet access,” in PETS’00.

[6] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-resistant
mixing for Bitcoin,” in WPES ’14.

[7] Bitcoin Core, “0.11.0 release notes,” https://github.com/bitcoin/bitcoin/
blob/v0.11.0/doc/release-notes.md#block-file-pruning.

[8] ——, “Segregated witness: the next steps,” https://bitcoincore.org/en/
2016/06/24/segwit-next-steps/#schnorr-signatures.

[9] Bitcoin Wiki, “Mixing services,” https://en.bitcoin.it/wiki/Category:
Mixing Services.

[10] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. Kroll, and E. Felten,
“Mixcoin: Anonymity for Bitcoin with accountable mixes,” in FC’14.

[11] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service or
denial of security?” in CCS’07.

[12] J. Bos and B. den Boer, “Detection of disrupters in the dc protocol,” in
EUROCRYPT’89.

[13] D. Cash, E. Kiltz, and V. Shoup, “The twin Diffie-Hellman problem
and applications,” J. Cryptol., vol. 22, no. 4, 2009.

[14] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” J. Cryptol., vol. 1.

[15] ——, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Comm. ACM, vol. 4, no. 2, 1981.

[16] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anonymous
messaging system handling millions of users,” in S&P’15.

[17] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous group
messaging,” in CCS ’10.

[18] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security’04.

[19] D. Dolev, R. Reischuk, and H. R. Strong, “Early stopping in byzantine
agreement,” J. ACM, vol. 37, no. 4, 1990.

[20] L. A. Dunning and R. Kresman, “Privacy preserving data sharing with
anonymous id assignment,” Transactions on Information Forensics and
Security, vol. 8, no. 2, 2013.

[21] M. Florian, J. Walter, and I. Baumgart, “Sybil-resistant pseudonymization
and pseudonym change without trusted third parties,” in WPES’15.

[22] C. Franck, “Dining cryptographers with 0.924 verifiable collision
resolution,” arXiv CoRR abs/1402.1732, https://arxiv.org/abs/1402.1732,
2014.

[23] C. Franck and J. van de Graaf, “Dining cryptographers are practical,”
arXiv CoRR abs/1402.2269, https://arxiv.org/abs/1402.2269, 2014.

[24] E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson, “Non-
interactive key exchange,” in PKC’13, 2013.

[25] S. Goel, M. Robson, M. Polte, and E. G. Sirer, “Herbivore: A
Scalable and Efficient Protocol for Anonymous Communication,” Cornell
University, Tech. Rep. 2003-1890.

[26] D. M. Goldschlag, M. Reed, and P. Syverson, “Hiding Routing
Information,” in Information Hiding: First International Workshop, 1996.

[27] P. Golle and A. Juels, “Dining cryptographers revisited,” in EURO-
CRYPT’04.

[28] H. W. Gould, “The Girard-Waring power sum formulas for symmetric
functions and Fibonacci sequences,” Fibonacci Quarterly, vol. 37, no. 2,
1999, http://www.fq.math.ca/Issues/37-2.pdf.

14

https://anon.inf.tu-dresden.de/
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures
https://en.bitcoin.it/wiki/Category:Mixing_Services
https://en.bitcoin.it/wiki/Category:Mixing_Services
https://arxiv.org/abs/1402.1732
https://arxiv.org/abs/1402.2269
http://www.fq.math.ca/Issues/37-2.pdf

[29] W. Hart, F. Johansson, and S. Pancratz, “FLINT: Fast Library for Number
Theory,” 2015, version 2.5.2, http://flintlib.org.

[30] E. Heilman, F. Baldimtsi, L. Alshenibr, A. Scafuro, and S. Goldberg,
“TumbleBit: An untrusted tumbler for Bitcoin-compatible anonymous
payments,” IACR Cryptology ePrint 2016/575. https://eprint.iacr.org/
2016/575.

[31] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts:
Anonymous on-blockchain and off-blockchain Bitcoin transactions,”
IACR Cryptology ePrint 2016/056. https://eprint.iacr.org/2016/056.

[32] E. Kaltofen and V. Shoup, “Fast polynomial factorization over high
algebraic extensions of finite fields,” in ISSAC’97.

[33] klinck (pseudonym), “PARI-Python interface,” https://code.google.com/
archive/p/pari-python/.

[34] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity in
Bitcoin using P2P network traffic,” in FC’14, 2014.

[35] A. Krasnova, M. Neikes, and P. Schwabe, “Footprint scheduling for
dining-cryptographer networks,” in FC’16.

[36] D. Krawisz, “Mycelium Shufflepuff (an inplementation of CoinShuffle),”
https://github.com/DanielKrawisz/Shufflepuff.

[37] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,” Post on
Bitcoin Forum, 2013, https://bitcointalk.org/index.php?topic=279249.

[38] ——, “Signature aggregation for improved scalablity,” 2016, https://
bitcointalk.org/index.php?topic=1377298.0.

[39] S. Meiklejohn and C. Orlandi, “Privacy-enhancing overlays in Bitcoin,”
in BITCOIN’15.

[40] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: Characterizing payments
among men with no names,” in IMC’13.

[41] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from Bitcoin,” in S&P’13.

[42] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[43] NXT, “1.7 release,” http://www.nxtinfo.org/2015/11/30/nxts-upcoming-
1-7-release-featuring-coin-shuffling-singleton-assets-account-control-
and-an-improved-forging-algorithm/.

[44] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in SXSW’13.

[45] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “CoinShuffle: Practical
decentralized coin mixing for Bitcoin,” in ESORICS’14, 2014.

[46] M. Spagnuolo, F. Maggi, and S. Zanero, “BitIodine: Extracting intelli-
gence from the Bitcoin network,” in FC’14, 2014.

[47] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms,” Distributed Computing, vol. 2,
no. 2, 1987.

[48] K. F. Stphan Kochen, Alexey Sokolov, “IRCv3.2 server-time extension,”
2012, http://ircv3.net/specs/extensions/server-time-3.2.html.

[49] E. Syta, H. Corrigan-Gibbs, S.-C. Weng, D. Wolinsky, B. Ford, and
A. Johnson, “Security analysis of accountable anonymity in Dissent,”
TISSEC, vol. 17, no. 1, 2014.

[50] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
Bitcoin,” in BITCOIN’15.

[51] N. van Saberhagen, “Cryptonote,” 2013, https://cryptonote.org/
whitepaper.pdf.

[52] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” SIGOPS Oper. Syst.
Rev., vol. 36, 2002.

[53] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent
in numbers: Making strong anonymity scale,” in OSDI’12, 2012.

[54] Zcash, “New alpha release: libzcash,” https://z.cash/blog/new-alpha-
release-libzcash.html.

[55] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle,
“CoinParty: Secure multi-party mixing of bitcoins,” in CODASPY’15.

APPENDIX

A. Generic Attack

In this section, we generalize the attack described in
Section VIII. The resulting attack breaks anonymity on every
P2P mixing protocol, which supports arbitrary input messages
and is supposed to ensure termination.

We assume an execution of a P2P mixing protocol with peer
set P = {p1, . . . , pn} and their set of fixed input messages
M = {m1, . . . ,mn}. We further assume that the attacker
controls the network and a majority A ⊂ P of peers in the
execution such that |P |/2 < |A| ≤ |P | − 3.

For the sake of presentation, we assume that no two peers
send a protocol message in the same communication round.
(This models that the network attacker can determine the order
of simultaneous messages arbitrarily.)

Let r be the first communication round (or protocol
message) after which input message mi of peer pi is known
to a collusion of a minority S of peers with pi /∈ S.8 Such a
round must exist, because every peer is supposed to output M
at the end of successful protocol execution, and M contains mi.
Note that knowledge of mi does not imply that the collusion
S of peers collectively knows that mi belongs to peer pi, it
just means that the collusion knows that the bitstring mi is
one of the peers’ input messages.

Assume that S ⊂ A, i.e., S is entirely controlled by the
attacker; this happens with non-negligible probability if the
attacker randomly selects malicious peers in the beginning.

The attacker lets the protocol run until round r and learns
mi (by control of S). Then the attacker uniformly selects an
index i∗ from the set of honest peers. From round r on, the
attacker blocks all further protocol messages by pi∗ , and by
his own peers in A; all these peers will appear offline for
the remaining peers in R ··= P \ ({pi∗} ∪A). By assumption,
|R| ≥ 2. Hence by the termination property, those remaining
peers in R finish the protocol with a result set M ′ ⊂M .

Observe that the remaining peers form a minority. If i∗ = i,
then pi is not among them. As a minority, they do not know
mi; recall that we have chosen r in such a way that no minority
knows mi. Thus mi /∈M ′. If however i∗ 6= i, then pi is among
them, and correctness of the protocol implies mi ∈ M ′. In
other words, the attacker learns whether mi belongs to peer
pi∗ or not. This breaks the anonymity of pi∗ .

8Formally, this is the first round r for which an efficient extraction algorithm
E exists such that E outputs mi with non-negligible probability, given the
full state of all peers in S after round r.

15

http://flintlib.org
https://eprint.iacr.org/2016/575
https://eprint.iacr.org/2016/575
https://eprint.iacr.org/2016/056
https://code.google.com/archive/p/pari-python/
https://code.google.com/archive/p/pari-python/
https://github.com/DanielKrawisz/Shufflepuff
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=1377298.0
https://bitcointalk.org/index.php?topic=1377298.0
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/
http://www.nxtinfo.org/2015/11/30/nxts-upcoming-1-7-release-featuring-coin-shuffling-singleton-assets-account-control-and-an-improved-forging-algorithm/
http://ircv3.net/specs/extensions/server-time-3.2.html
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://z.cash/blog/new-alpha-release-libzcash.html
https://z.cash/blog/new-alpha-release-libzcash.html

	Introduction
	Contributions
	Organization

	Conceptualizing Peer-to-Peer (P2P) Mixing
	P2P Mixing Protocol
	Setup and Communication Model
	Input and Outputs of a P2P Mixing Protocol
	Freshness of Input Messages
	Explicit Confirmation of the Output

	Interface and Execution Model
	Threat Model
	Security Goals

	Solution Overview
	Handling Collisions
	Handling Disruption and Ensuring Termination
	Consistent Detection of Disruption
	Exposing a Disruptor

	The DiceMix protocol
	Building Blocks
	Digital Signatures
	Non-interactive Key Exchange
	Hash Functions
	Conventions and Notation for the Pseudocode

	Contract with the Application
	Guarantees Provided to the Application
	Requirements on the Application

	Protocol Description
	Single Run of the Protocol (Black Pseudocode)
	Concurrent Runs of the Protocol (Blue Pseudocode)
	Handling Offline Peers (Blue Pseudocode)

	Security and Correctness Analysis
	Sender Anonymity
	Validity
	Agreement
	Termination

	Variants of the Protocol
	Dropping the Commitment Phase

	Performance Analysis
	Prototype Implementation
	Testbed
	Results
	Optimization
	Conclusion

	Efficient Coin Mixing in Bitcoin
	The Bitcoin System
	Security Goals
	The CoinShuffle++ Protocol
	Security Analysis
	Performance Analysis
	Practical Considerations

	Related Work in Crypto-currencies
	Privacy-preserving Crypto-currencies
	Centralized Mixing Services
	Other P2P Approaches
	Sybil-Resistant Approaches

	A Deanonymization Attack on State-Of-The-Art P2P Mixing Protocols
	Example: A Deanonymization Attack on Dissent
	Generalizing the Attack

	Conclusions
	References
	Appendix
	Generic Attack

